Bedienungsanleitung

Fireface 802 FS

Eine Legende kehrt zurück!

24 Bit / 192 kHz ✓

TotalMix[™]

SyncAlign[™]

SteadyClock[™]

USB 2.0 Digital I/O System
12 + 16 + 2 Channels
Analog / ADAT / AES / SPDIF Interface
24 Bit / 192 kHz Digital Audio
60 x 30 Matrix Router
MIDI Eingang/Ausgang
Stand-Alone Betrieb
Class Compliant Betrieb
ARC USB & MIDI Remote Control

Wichtige Sicherheitshinweise

ACHTUNG! Gerät nicht öffnen - Gefahr durch Stromschlag

Das Gerät weist innen nicht isolierte, Spannung führende Teile auf. Im Inneren befinden sich keine vom Benutzer zu wartenden Teile. Reparaturarbeiten dürfen nur von qualifiziertem Fachpersonal durchgeführt werden.

Netzanschluss

- Das Gerät muss geerdet sein niemals ohne Schutzkontakt betreiben
- Defekte Anschlussleitungen dürfen nicht verwendet werden
- Betrieb des Gerätes nur in Übereinstimmung mit der Bedienungsanleitung
- Nur Sicherungen gleichen Typs verwenden

Um eine Gefährdung durch Feuer oder Stromschlag auszuschließen, das Gerät weder Regen noch Feuchtigkeit aussetzen. Spritzwasser oder tropfende Flüssigkeiten dürfen nicht in das Gerät gelangen. Keine Gefäße mit Flüssigkeiten, z. B. Getränke oder Vasen, auf das Gerät stellen. Gefahr durch Kondensfeuchtigkeit - erst einschalten wenn sich das Gerät auf Raumtemperatur erwärmt hat.

Montage

Außenflächen des Gerätes können im Betrieb heiß werden - für ausreichende Luftzirkulation sorgen. Direkte Sonneneinstrahlung und die unmittelbare Nähe zu Wärmequellen vermeiden. Beim Einbau in ein Rack für ausreichende Luftzufuhr und Abstand zu anderen Geräten sorgen.

Zur Erfüllung der europäischen CE-Norm muss das Fireface 802 mit einem CE-geprüften Computer der Klasse B benutzt werden. Alle Verbindungskabel müssen abgeschirmt sein. Der Computer sowie alle an das Fireface 802 angeschlossenen Kabel müssen ordnungsgemäß geerdet sein. Der Betrieb mit nicht zertifizierten Computern und Kabeln kann zu Störungen anderer Geräte als auch des Fireface 802 führen.

Bei Fremdeingriffen in das Gerät erlischt die Garantie. Nur vom Hersteller spezifiziertes Zubehör verwenden.

Lesen Sie die Bedienungsanleitung vollständig. Sie enthält alle zum Einsatz des Gerätes nötigen Informationen.

D	W	ichtige Sicherheitshinweise	2
D	Allg	emeines	
1	Li	nleitungeferumfang	8
3		ystemvoraussetzungen	
4 5		urzbeschreibung und Eigenschaftenbetriebnahme – Quick Start	č
J	5.1	Anschlüsse – Bedienelemente – Anzeigen	c
	5.2	Quick Start	
	_		
	Insta	allation und Betrieb - Windows	
6	ш	ardware, Treiber und Firmware Installation	
U	61 lr	nstallation von Hardware und Treiber	14
	6.2	Deinstallation der Treiber	
	6.3	Firmware Update	
7	K	onfiguration des Fireface	
	7.1	Settingsdialog – Allgemeines	15
	7.2	Settingsdialog – Pitch	17
8	In	betriebnahme und Bedienung	
	8.1	Wiedergabe	18
	8.2	DVD-Playback (AC-3 / DTS)	
	8.3	Hinweise zu WDM	
	8.4	Anzahl der Kanäle mit WDM	
	8.5 8.6	Multiclient-Betrieb	
	8.7	Aufnahme Analog Aufnahme Digital	
	8.8	Clock Modi – Synchronisation	
9		etrieb unter ASIO	22
•	9.1	Allgemeines	23
	9.2	Anzahl der Kanäle mit ASIO	23
	9.3	Bekannte Probleme	
10		etrieb mehrerer Fireface 802	
11	D	GICheck Windows	25
12	H	otline – Probleme – Lösungen	26

▶ Installation und Betrieb - Mac OS X

13		ardware, Treiber und Firmware Installation	
	13.1	Installation von Hardware und Treiber	
	13.2	Deinstallation der Treiber	
		Firmware Update	28
14		onfiguration des Fireface	
	14.1		29
		Clock Modi – Synchronisation	3
15		ac OS X FAQ	
		MIDI funktioniert nicht	
	15.2		
	15.4	Unterstützte Samplefrequenzen	
	15.4		
16		etrieb mehrerer Fireface 802	31
17		GICheck NG Mac	
18		otline – Probleme – Lösungen	
	• • • •	200angon	
	Fina	änge und Ausgänge	
_	9	ango ana Aaogango	
19	Ar	naloge Eingänge	
		Line Hinten	38
		Mikrofon / Line / Inst Vorne	
20		naloge Ausgänge	
	20.1	Line	39
	20.2	Kopfhörer / Line Out	39
	20.3	DC-gekoppelte Ausgänge (CV/Gate)	40
21		gitale Anschlüsse	
	21.1		
		AES	
		MIDI	42
22		ord Clock	
		Wordclock Ein- und Ausgang	
	22.2	Einsatz und Technik	44
	22.3	Verkabelung und Abschlusswiderstände	4
	22.4	Betrieb	45
_	Ston	d-Alone Betrieb	
	Stari	d-Alone Betrieb	
23	Fı	ınktion und Betrieb	
23	23.1	Allgemeines	48
	23.1		40 48
	23.3		
24		eispiele	
	24.1	12-Kanal AD/DA-Konverter	49
	24.2	4-Kanal Mic Preamp	
	24.3	Monitor-Mixer	
	24.4	Digital Format Konverter	
	24.5	Analoge/digitale Routing Matrix	49

▶ TotalMix FX

25	Ro	outing und Monitoring	
	25.1	Überblick	52
	25.2	Die Oberfläche	54
	25.3	Die Kanäle	55
	25.	3.1 Settings	57
	25.	3.2 Equalizer	
	25.	.3.3 Dynamics	
	25.4	Sektion Control Room	61
	25.5	Der Control Strip	62
	25.	.5.1 View Options	
		.5.2 Snapshots - Groups	
	25.	.5.3 Channel Layout - Layout Presets	
	25.	.5.4 Scroll Location Marker	
	25.6	Reverb und Echo	
	25.7	Preferences	
	25.	.7.1 Store for Current or All Users	
	25.8	Settings	
		.8.1 Mixer Page	
	25	.8.2 MIDI Page	
		8.3 OSC Page	
		8.4 Aux Devices	
	25.9	Hotkeys und Bedienung	
	25.10	Menü Options	77
		Menü Window	
26		Matrix	
	26.1	Überblick	78
	26.2		
	26.3	Bedienung	
27		ops und Tricks	
	27.1	ASIO Direct Monitoring (Windows)	80
	27.2	Kopieren eines Submix	
	27.3	Duplizieren des Ausgangssignals (Mirror)	80
	27.4	Löschen eines Submix	80
	27.5	Kopieren und Einfügen	
	27.6	Aufnahme eines Submix - Loopback	81
	27.7	MS Processing	
	27.8	Programmstartoptionen (Windows)	82
28	_	DI Remote Control	02
	28.1	Übersicht	83
	28.2	Mapping	
	28.3	Setup	
	28.4	Betrieb	
	28.5	MIDI Control	
	28.6	Stand-Alone MIDI Control	 ar
	28.7	Loopback Detection	
	28.8	OSC (Open Sound Control)	 88
29		W Mode	
20 30		talMix Remote	

Class Compliant Modus

31 32 33 34 35 36	33.1 33.2 U B	Ilgemeines ardwareanforderungen betriebnahme Nützliche Hinweise Class Compliant unter Windows und mac nterstützte Ein- und Ausgänge edienung am Gerät udio Routing und Processing	92 93 93 OS94 94
D	Tecl	nnische Referenz	
37	Т	echnische Daten	
٠.	37.1	Analoger Teil	98
	37.2	MIDI	
	37.3	Digitaler Teil	
	37.4	Digitale Eingänge	99
	37.5	Digitale Ausgänge	
	37.6	Allgemeines	
38		echnischer Hintergrund	
	38.1	Lock und SyncCheck	101
	38.2	Latenz und Monitoring	102
	38.3	USB Audio	
	38.4	DS - Double Speed	104
	38.5	QS - Quad Speed	104
	38.6	Rauschabstand im DS-/QS-Betrieb	105
	38.7	SteadyClock FS	106
39	D	iagramme	
	39.1	Blockschaltbild Fireface 802 FS	107
	39.2	Steckerbelegungen	108
	Dive	erses	
	2.70		
40	7 1	ubehör	110
41		arantie	
42		nhang	
12		onformitätsorklärung	

Bedienungsanleitung

Fireface 802 FS

Allgemeines

1. Einleitung

Vielen Dank für Ihr Vertrauen in unser Fireface 802 FS. Dieses Audiosystem ermöglicht das Überspielen analoger und digitaler Audiodaten von praktisch beliebigen Quellen direkt in Ihren Computer. Zahlreiche einzigartige Merkmale, durchdachte Settingsdialoge, eine überragende und unglaublich flexible Mixer- und Monitoring-Lösung, professionelle DSP Effekte, sowie exzellente analoge Schaltungen mit neuesten digitalen Wandlern stellen das Fireface 802 FS an die Spitze Computer-basierter Audio Interfaces.

Treiber sind verfügbar für Windows 7 bis 11, Mac OS X x86 (Intel) und macOS (Intel, M1).

Unsere Hi-Performance Philosophie garantiert volle Systemleistung, indem möglichst viele Funktionen nicht vom Treiber (der CPU), sondern von der Audiohardware selbst ausgeführt werden.

2. Lieferumfang

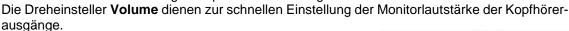
- Fireface 802 FS
- Verbindungskabel USB 2.0, 1,8 m (USB-A/B)
- Netzkabel
- Handbuch
- 1 optisches Kabel (TOSLINK), 2 m
- 4 Gehäusefüße, selbstklebend

3. Systemvoraussetzungen

- Windows 7 oder höher, Intel Mac OS X (10.12 oder höher)
- 1 x USB 2.0 Port oder USB 3.0 Port
- · Computer mit mindestens Intel Core i5 CPU

4. Kurzbeschreibung und Eigenschaften

- Alle Einstellungen in Echtzeit änderbar
- Puffergrößen/Latenzzeiten zwischen 48 und 8192 Samples wählbar
- 8 Kanäle 96 kHz/24 Bit Record/Playback über ADAT optical (S/MUX)
- 4 Kanäle 192 kHz/24 Bit Record/Playback über ADAT optical (S/MUX4)
- · Clock Modi Slave und Master
- Automatische und intelligente Master/Slave Clocksteuerung
- Unübertroffene Bitclock PLL (Audio Synchronisation) im ADAT Betrieb
- SteadyClock: Jitter-unempfindliche, superstabile Digitalclock
- DDS-Technologie für freie Einstellung der Samplefrequenz
- SyncAlign garantiert samplegenaue und niemals wechselnde Kanalzuordnungen
- SyncCheck prüft die Synchronität der Eingangssignale
- TotalMix f
 ür Latenz-freie Submixe und perfektes ASIO Direct Monitoring
- TotalMix: 1800 Kanal Mischer mit 46 Bit interner Auflösung
- TotalMix FX: 3-Band EQ, Low Cut, Reverb, Echo, Compressor, Expander, Auto Level
- MIDI I/O für 16 Kanäle Hi-Speed Low-Jitter MIDI
- 2 x niederohmige Hi-Power Kopfhörerausgänge
- DIGICheck DSP: Levelmeter in Hardware mit Peak- und RMS-Berechnung


5. Inbetriebnahme - Quickstart

5.1 Anschlüsse - Bedienelemente - Anzeigen

Auf der Frontseite des Fireface 802 FS befinden sich vier Instrumenten- und Mikrofoneingänge, zwei Stereo Kopfhörerausgänge, sechs Drehregler, ein Netzschalter und mehrere Status LEDs.

Die Neutrik Combobuchsen der vier **Mic/Line/Inst** Eingänge erlauben einen Anschluss per XLR und 6,3 mm Klinkenstecker. Sie werden ergänzt durch Anzeigen für Signal (SIG), Phantomspeisung (48V) und aktiven Klinkeneingang (INST). Dieser ist hochohmig und damit auch als Instrumenteneingang nutzbar.

Die analogen Ausgänge 9 bis 12 gehen auf die Kopfhörerausgänge **Phones 1** und **Phones 2**. Diese auch als niederohmige Line Out nutzbaren Ausgänge höchster Qualität sind in der Lage, genug Lautstärke unverzerrt sowohl in nieder- als auch hochohmigen Kopfhörern zu erzeugen.

State LEDs. WC, AES, ADAT1, ADAT2. Signalisieren getrennt für jeden digitalen Eingang, ob ein gültiges Eingangssignal anliegt. RMEs exklusives *SyncCheck* zeigt zusätzlich per blinkender LED, welches der Eingangssignale zwar gelockt, nicht aber synchron zu den anderen ist. Siehe auch Kapitel 8.8 / 14.2, Clock Modi - Synchronisation.

MIDI LEDs. Signalisieren für Ein- und Ausgang, ob MIDI-Daten empfangen oder gesendet werden.

) wc

AES

MIDI

OUT

a cc

USB

GAIN

MIC/LINE

Die grüne LED **USB** erlischt, wenn die USB-Verbindung nicht initialisiert oder unterbrochen wurde (Error, Kabel nicht gesteckt etc.). Die gelbe LED **CC** (Class Compliant) signalisiert den CC-Modus, über den Drucktaster CC auf der Rückseite aktiviert.

Auf der Rückseite des Fireface 802 FS befinden sich weitere acht analoge Ein- und Ausgänge, der Netzanschluss, sowie sämtliche digitalen Ein- und Ausgänge:

Balanced Line Level Inputs. 8 symmetrische analoge Eingänge per 6,3 mm Stereo-Klinkenbuchsen.

Balanced Line Level Outputs. 8 symmetrische analoge Ausgänge per 6,3 mm Stereo-Klinkenbuchse.

AES/EBU I/O. XLR. Das Fireface 802 akzeptiert alle üblichen Digitalquellen, sowohl SPDIF als auch AES/EBU.

ADAT1 I/O. TOSLINK. Standard ADAT optical Port, 8 Kanäle. Kann nach Umschaltung im Settingsdialog auch als optischer SPDIF Ein- und Ausgang genutzt werden.

ADAT2 I/O. TOSLINK. Standard ADAT optical Port, 8 Kanäle. Kann nach Umschaltung im Settingsdialog auch als optischer SPDIF Ein- und Ausgang genutzt werden.

Wordclock I/O. BNC. Über den Settingsdialog kann der Eingang intern mit 75 Ohm terminiert werden.

Remote. Anschluss für die optionale Fernbedienung ARC USB, wenn das Fireface 802 FS im Stand-Alone und Class Compliant Modus benutzt wird. Dieser Port funktioniert aber auch alternativ statt des Anschlusses der ARC USB an den Computer.

USB 2.0. USB-Buchse zum Anschluss an den Computer.

MIDI I/O. Zwei 5-polige DIN-Buchsen als MIDI Ein- und Ausgang.

Haken. Dient zur Fixierung und Sicherung der Anschlusskabel. Einfach vor dem Einstecken durch den Haken führen.

Kaltgerätestecker für Netzanschluss. Das speziell entwickelte, interne Hi-Performance Schaltnetzteil lässt das Fireface im Bereich 100 V bis 240 V AC arbeiten. Es ist kurzschlusssicher, besitzt ein integriertes Netzfilter, regelt Netz-Spannungsschwankungen vollständig aus, und unterdrückt Netzstörungen.

5.2 Quick Start

Nach der Treiberinstallation (Kapitel 6 bzw. 13) sind die Klinkeneingänge bzw. die XLR-Eingänge mit der jeweiligen analogen Signalquelle zu verbinden. Die Eingangsempfindlichkeit kann für die rückwärtigen Eingänge über TotalMix (Input Channel Settings, Level) so verändert werden dass sich eine gute Aussteuerung ergibt. Eine weitere Optimierung lässt sich erzielen, wenn der Ausgangspegel des Signal-liefernden Gerätes angepasst wird. Eine optimale Aussteuerung erreicht man durch langsames Erhöhen des Pegels, bis die Peak Level Meter in TotalMix circa –3 dB anzeigen.

Die analogen Line-Eingänge des Fireface 802 sind für +4 dBu und -10 dBV Signale gleichermaßen geeignet. Die elektronische Eingangsschaltung kann sowohl symmetrische (XLR, Stereo-Klinkenstecker) als auch unsymmetrische (Mono-Klinkenstecker) Eingangssignale korrekt verarbeiten.

Die Verstärkung der vorderen Eingänge wird direkt über die Drehregler GAIN eingestellt. Die Signal-LED neben den Buchsen ist zweifarbig und zeigt Übersteuerung durch einen Wechsel von grün nach rot an.

Die digitalen Ausgänge des Fireface 802 FS bieten die Formate AES/EBU (SPDIF kompatibel) und ADAT optical (SPDIF kompatibel) an den entsprechenden Buchsen.

Auf der analogen Wiedergabe-, also DA-Seite, erfolgt eine Anpassung des analogen Ausgangspegels der rückwärtigen Buchsen über TotalMix (Output Channel Settings, Level).

Das Ausgangssignal der Kanäle 9/10 und 11/12 steht frontseitig zur Verfügung. Der Pegel kann jeweils über VOL direkt unabhängig eingestellt werden. Der Ausgang ist besonders niederohmig, um auch Kopfhörer optimal anschließen zu können.

Das Fireface 802 FS kann seinen aktuellen Zustand in 6 Speicherplätzen (Setups) ablegen und laden. Damit ist das Fireface 802 FS nach entsprechender Konfiguration Stand-Alone nutzbar, und ersetzt zahlreiche Geräte (siehe Kapitel 24).

Bedienungsanleitung

Fireface 802 FS

Installation und Betrieb - Windows

6. Hardware, Treiber und Firmware Installation

6.1 Installation von Hardware und Treiber

Zur Vereinfachung der Installation empfiehlt es sich die Treiber schon vor dem Anschluss des Gerätes an den Computer zu installieren. Es funktioniert aber auch anders herum.

RME verbessert alle Treiber fortwährend. Laden Sie sich bitte den aktuellsten Treiber von der RME Website, http://rme.to/download, herunter. Nach dem Entpacken der heruntergeladenen ZIP-Datei startet die Installation mit *rmeinstaller.exe*. Starten Sie *rmeinstaller.exe*, und folgen Sie den Anweisungen des Assistenten am Bildschirm. Nach der Treiberinstallation verbinden Sie das 802 per USB-Kabel mit dem Computer. Windows erkennt das neue Gerät als *Fireface 802 FS und installiert die Treiber automatisch.

Nach einem Neustart erscheinen die Symbole von TotalMix FX und Settingsdialog im Infobereich der Taskleiste. Falls nicht führt ein Klick auf das Dreieck zu Anpassen und den Verhaltensoptionen der Icons.

Treiber-Updates erfordern keine Entfernung des vorherigen Treibers. Der neue Treiber kann einfach über den vorherigen installiert werden.

6.2 Deinstallation der Treiber

Eine Deinstallation der Treiberdateien ist weder notwendig, noch seitens Windows vorgesehen. Dank vollständiger Plug & Play Unterstützung werden die Treiber nach Entfernen der Hardware nicht mehr geladen. Sie können dann auf Wunsch manuell gelöscht werden.

Dies gilt jedoch nicht für die Autostart-Einträge von TotalMix und Settingsdialog, sowie die Registrierung des ASIO-Treibers. Diese Einträge lassen sich aber über eine Software Deinstallationsanweisung aus der Registry entfernen, über Systemsteuerung, Programme und Funktionen. Klicken Sie hier auf den Eintrag 'RME Fireface'.

6.3 Firmware Update

Das Flash Update Tool, herunterladbar von der RME Website (http://rme.to/usb), aktualisiert die Firmware des Fireface 802 auf die jeweils neueste Version. Es erfordert einen installierten Treiber.

Starten Sie das Programm **fut_usb.exe**. Das Flash Update Tool zeigt zunächst die aktuelle Version der Firmware des Fireface, und ob diese aktualisiert werden sollte. Wenn ja, dann einfach den Knopf 'Update' drücken. Ein Balken zeigt den Fortgang des Updates und das Ende des Flash-Vorganges an (Verify Ok).

Nach dem Update muss das Fireface 802 FS resettet werden. Dies geschieht durch kurzes Ausschalten des Gerätes. Ein Neustart des Rechners ist nicht erforderlich.

Sollte das Flashen unerwartet fehlschlagen wird ab dem nächsten Neustart das Not-BIOS des Gerätes benutzt, es bleibt also funktionsfähig. Das Flashen kann dann erneut versucht werden.

7. Konfiguration des Fireface

7.1 Settingsdialog - Allgemeines

Die Konfiguration des Fireface 802 FS erfolgt über einen eigenen Settingsdialog. Das Fenster 'Settings' lässt sich aufrufen:

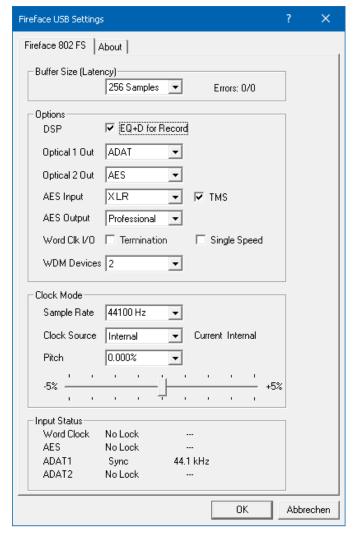
· Per Mausklick auf das Feuersymbol rechts unten in der Taskleiste

Der Mischer des 802, TotalMix, lässt sich aufrufen:

Per Mausklick auf das DSP FX Symbol rechts unten in der Taskleiste

Die Hardware des Fireface 802 stellt praxisgerechte Funktionen und Optionen bereit, mit denen der Betrieb gezielt angepasst werden kann. Der Settingsdialog bietet Zugriff auf:

- Die Latenz
- Arbeitsweise des DSP
- Konfiguration der digitalen I/Os
- Die aktuelle Samplefrequenz
- Das Synchronisationsverhalten
- Status von Ein- und Ausgang


Einstellungen im Settingsdialog werden in Echtzeit übernommen, sind also ohne Klick auf 'OK' oder das Schließen der Dialogbox aktiv.

Veränderungen an den Settings sollten aber möglichst nicht während laufender Wiedergabe oder Aufnahme erfolgen, da es sonst zu Störungen kommen kann.

Zu beachten ist auch, dass manche Programme selbst im Modus 'Stop' das Aufnahme- und Wiedergabegerät geöffnet halten, und deshalb die neuen Einstellungen nicht immer sofort wirksam werden.

Auf der Registerkarte **About** ist sowohl die aktuelle Treiberversion als auch die Firmwareversion des Fireface 802 zu sehen. About enthält drei weitere Optionen:

Lock Registry verhindert Änderungen an den in der Registry gespeicherten Einstellungen des Settingsdi-

alogs per Passwort. Alle Einstellungen sind weiter temporär änderbar. Da bei einem Neustart des Rechners immer die Einstellungen aus der Registry geladen werden kann so auf einfache Weise ein definierter Ausgangszustand des Fireface 802 erzeugt werden.

Enable MMCSS for ASIO aktiviert ASIO mit höherer Priorität des ASIO Treiber-Threads. Hinweis: Das Aktivieren dieser Option scheint derzeit nur bei höherer Last mit aktuellem Cubase/Nuendo sinnvoll zu sein. Bei anderen Programmen kann sich die Performance verschlechtern. Die Umschaltung wird nach einem Reset des ASIO-Treibers aktiv, daher lässt sich schnell und einfach testen, welche Einstellung besser funktioniert.

Sort ASIO Devices

Ändert die Reihenfolge nur der ASIO-Kanäle im Mehrgerätebetrieb.

Buffer Size

Die Einstellung der *Buffer Size* (Puffergröße) bestimmt unter ASIO und WDM sowohl die Latenz zwischen eingehenden und ausgehenden Daten, als auch die Betriebssicherheit des Systems (siehe Kapitel 9.1).

Errors beziehen sich nicht auf Pufferfehler, sondern das Auftreten von USB-Übertragungsfehlern. Die Anzeige wird beim Start einer Aufnahme/Wiedergabe auf Null gesetzt. Nähere Informationen enthält Kapitel 38.3.

Options

DSP - EQ+D for Record

Schaltet EQ und Dynamics aller Eingangskanäle in den Aufnahmeweg. Ist jedoch Loopback aktiv sind EQ und Dynamics des Ausgangskanals im Aufnahmeweg. Siehe auch Kapitel 27.6.

Optical 1 Out

Dieser optische TOSLINK-Ausgang kann als ADAT- oder SPDIF-Ausgang arbeiten. ADAT beinhaltet Kanäle 15-22, SPDIF Kanäle 15/16. Im Modus SPDIF sind die Ausgangskanäle 17-22 nur noch per Loopback nutzbar.

Optical 2 Out

Dieser optische TOSLINK-Ausgang kann als ADAT- oder SPDIF-Ausgang arbeiten. ADAT beinhaltet Kanäle 23-30, SPDIF Kanäle 23/24. Im Modus SPDIF sind die Ausgangskanäle 25-30 nur noch per Loopback nutzbar. Bei Auswahl von AES wird das Ausgangssignal des AES-Kanals (XLR) auch optisch als SPDIF ausgegeben.

AES Input

Default: XLR. Bei Auswahl von Optical 2 wird ein am Eingang ADAT 2 anliegendes SPDIF-Signal auf den Eingangskanal AES geschaltet, siehe auch Blockschaltbild in Kapitel 39.1. Das Eingangssignal der AES XLR-Buchse steht dann nicht mehr zur Verfügung.

TMS überträgt Zusatzinformationen wie Track Marker und Channel Status Informationen vom AES- und SPDIF-Eingang. Werden diese Informationen nicht benötigt sollte die Option ausgeschaltet sein.

AES Output

Das AES-Ausgangssignal kann mit dem Channel Status Professional oder Consumer (SPDIF) versehen werden. Näheres enthält Kapitel 21.2.

Word Clk I/O

Termination terminiert den Wordclock-Eingang intern mit 75 Ohm. Single Speed: Das Wordclock-Ausgangssignal entspricht normalerweise der aktuellen Samplefrequenz. Nach Anwahl von Single Speed wird die Frequenz angepasst, so dass sie immer im Bereich 32 – 48 kHz ist. Bei 96 kHz und 192 kHz Samplefrequenz wird also 48 kHz ausgegeben.

WDM Devices

Eine Reduzierung auf die Anzahl tatsächlich notwendiger WDM Devices kann die Performance des Betriebssystems verbessern.

Clock Mode Sample Rate

Setzt die aktuell verwendete Samplefrequenz. Bietet eine zentrale und komfortable Möglichkeit, die Samplefrequenz aller WDM-Devices auf den gewünschten Wert zu stellen, denn seit Vista ist dies nicht mehr über das Audioprogramm möglich. Ein ASIO-Programm kann die Samplefrequenz jedoch wie bisher selbst setzen.

Bei laufender Wiedergabe/Aufnahme ist die Auswahl ausgegraut, eine Änderung nicht möglich.

Clock Source

Das Gerät kann als Clock-Quelle seine eigene Clock (Internal = Master) oder eines der Eingangssignale Word, AES, ADAT1 und ADAT2 verwenden. Steht die gewählte Clock-Quelle nicht zur Verfügung (Input Status No Lock), wechselt das Gerät automatisch zur nächsten verfügbaren (dieses Verhalten wird AutoSync genannt). Steht keine zur Verfügung wird die interne Clock benutzt. Die aktuell verwendete Clock-Quelle wird als *Current* angezeigt.

Pitch

Näheres zu Pitch enthält Kapitel 7.2.

Input Status

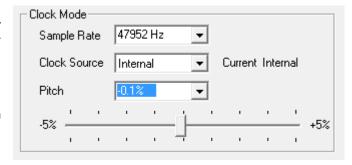
Zeigt für die Eingänge Word, AES, ADAT1 und ADAT2 getrennt an, ob ein gültiges Signal anliegt, (No Lock, Lock), oder ob ein gültiges *und* synchrones Signal anliegt (Sync). In der dritten Spalte erscheint die von der Hardware erkannte Samplefrequenz (sehr grobe Erkennung, 32 kHz, 44,1 kHz, 48 kHz etc.). Im Feld *Clock Mode* wird angezeigt, zu welchem Signal die Synchronität besteht. Siehe auch Kapitel 38.1.

7.2 Settingsdialog - Pitch

Üblicherweise erzeugen Soundkarten und Audiointerfaces ihre interne Clock (Master Mode) aus Quarzen. Dadurch kann die interne Clock z.B. auf 44.1 kHz oder 48 kHz gestellt werden, aber nicht auf Werte dazwischen. SteadyClock, RMEs sensationelles Low Jitter Clock System, basiert auf einem *Direct Digital Synthesizer* (DDS). Mit dieser Schaltung können fast beliebige Frequenzen in höchster Präzision erzeugt werden.

Die Umsetzung im Fireface berücksichtigt die Bedürfnisse von professioneller Videoanwendung, als auch den Wunsch nach maximaler Flexibilität. Die Sektion Pitch enthält dazu sowohl eine Liste der für Video typischen Frequenzen (sogenannte Pull Up/Pull Down mit 0.1% und 4%), als auch einen Fader, mit dem ausgehend von der Grundfrequenz selbige in Schritten von 1 Hz (!) über einen Bereich von +/- 5% frei veränderbar ist.

Die Funktion Pitch erfordert ein im Clock Mode Master befindliches Fireface! Die Frequenzeinstellung wird nur mit diesem einen Fireface aktiviert!


Eine Änderung der Samplefrequenz während laufender Aufnahme/Wiedergabe führt bei größeren Frequenzänderungen oftmals zu einem Verlust des Tones oder zu Warnmeldungen der jeweiligen Software. Daher sollte die gewünschte Samplefrequenz zumindest grob schon vor dem Start der Software eingestellt sein.

Coarse

Grobe Veränderung in 50 Hz-Schritten: durch Klicken der Maus rechts oder links in die Faderbahn.

Fine

Feine Veränderung der Frequenz in 1 Hz-Schritten: mit den Cursortasten Links/Rechts.

Reset

Klick in die Faderbahn mit gedrückter Strg-Taste.

Anwendungsbeispiele

Pitch dient der gleichzeitigen Tempo- und Tune-Änderung während der Aufnahme oder Wiedergabe. Von Angleichung zu anderen Quellen bis zu kreativer Verfremdung ist alles möglich.

Pitch erlaubt das absichtliche Verstimmen der gesamten DAW. Damit kann diese an Instrumente angeglichen werden, deren Tuning falsch und nicht veränderbar ist.

Pitch erlaubt die Änderung der Samplefrequenz aller WDM-Devices gleichzeitig. Dies ist seit Vista nicht mehr von der Applikation aus möglich, und erfordert normalerweise eine manuelle Neukonfiguration aller WDM-Devices. Die Änderung der Sample Rate im Settingsdialog löst dieses Problem. Da die Änderung im System einige Sekunden dauern kann, sollte eine Aufnahme / Wiedergabe nicht sofort nach der Änderung gestartet werden.

Tip: die Anzeige der CPU-Auslastung zeigt zuverlässig, wann das Audiosubsystem die Umstellung beendet hat.

8. Inbetriebnahme und Bedienung

8.1 Wiedergabe

Zuerst ist das Fireface als ausgebendes Gerät in der jeweiligen Software einzustellen. Übliche Bezeichnungen sind *Playback Device, Device, Audiogerät* etc., meist unter *Optionen, Vorgaben* oder *Preferences* zu finden.

•

WDM Wiedergabedevices sind nicht verfügbar, wenn im Settingsdialog die Anzahl der WDM Devices auf 0 eingestellt ist.

Wir empfehlen, alle Systemsounds abzustellen (über > Systemsteuerung /Akustische Signale<), und das Fireface nicht als Bevorzugtes Wiedergabegerät einzustellen, da es sonst zu Synchronisationsverlust und Störgeräuschen kommen kann. Wenn Sie ohne Systemsounds nicht leben können empfehlen wir den Einsatz der On-Board Soundkarte oder den Erwerb eines günstigen Blaster-Clones. Dieser sollte dann als Bevorzugtes Wiedergabegerät in > Systemsteuerung /Multimedia /Audio< bzw. > Systemsteuerung /Sound /Wiedergabe< konfiguriert werden.

Mehr oder größere Puffer in der Applikation (WDM) oder dem RME Settingsdialog (ASIO) ergeben eine höhere Störsicherheit, aber auch eine größere Verzögerung bis zur Ausgabe der Daten.

<u>Hinweis</u>: Seit Vista ist es der Applikation unter WDM nicht mehr möglich die Samplefrequenz zu bestimmen. Der Treiber des Fireface 802 enthält daher eine Möglichkeit die Samplefrequenz zentral für alle WDM-Devices im Settingsdialog einzustellen, siehe Kapitel 7.1.

8.2 DVD-Playback (AC-3/DTS)

AC-3 / DTS

Populäre DVD Software Player können ihren Audio-Datenstrom über den SPDIF-Ausgang des Fireface 802 zu jedem AC-3/DTS kompatiblen Receiver senden.

•

Die Samplefrequenz muss im Fireface 802 auf 48 kHz gestellt werden, da die Software sonst nur einen Stereo 2-Kanal Downmix via SPDIF ausgibt.

In manchen Fällen muss das Wiedergabegerät des Fireface 802 als *Standard* in > *Systemsteue-rung /Sound /Wiedergabe* < gesetzt sein, damit die Software es erkennt.

In den Audio-Eigenschaften der DVD-Software steht nun die Option 'SPDIF Out' oder ähnlich zur Verfügung. Wird diese angewählt, spielt die Software das undekodierte digitale Mehrkanalsignal über das Fireface ab.

Achtung: Dieses 'SPDIF'-Signal klingt wie zerhacktes Rauschen bei maximalem Pegel.

Multichannel

DVD Software Player können auch als Software-Decoder arbeiten, und den mehrkanaligen Datenstrom einer DVD direkt auf die analogen Ausgänge des Fireface 802 ausgeben. Damit dies funktioniert, muss das WDM Wiedergabegerät 'Lautsprecher' des Fireface 802 unter >Systemsteuerung/ Sound < als Standard ausgewählt werden. Außerdem ist unter >Konfigurieren < das Lautsprechersetup von Stereo auf 5.1 Surround zu ändern.

In den Audio-Eigenschaften der abspielenden Software stehen nun mehrere Mehrkanal-Wiedergabemodi zur Verfügung. Werden diese angewählt, spielt die Software das dekodierte analoge Mehrkanalsignal über das Fireface ab. Die Wiedergabe ist per TotalMix natürlich auch auf den digitalen Ausgängen möglich.

Die typische Kanalzuweisung bei Surroundwiedergabe ist:

- 1 Left
- 2 Right
- 3 Center
- 4 LFE (Low Frequency Effects)
- 5 SL (Surround Left)
- 6 SR (Surround Right)

<u>Hinweis 1</u>: Das Konfigurieren des Fireface als System-Wiedergabegerät widerspricht unseren Empfehlungen, da professionelle Interfaces vom System nicht gestört werden sollten. Stellen Sie daher sicher, dass diese Konfiguration nach der DVD-Wiedergabe wieder rückgängig gemacht wird, oder schalten Sie alle Systemklänge generell ab (Sounds, Schema 'Keine akustischen Signale').

<u>Hinweis 2</u>: Der DVD-Player wird vom Fireface gesynct. Im Clock Mode Slave verändern sich die Wiedergabegeschwindigkeit und die Tonhöhe entsprechend der anliegenden Clock bzw. Samplefrequenz.

8.3 Hinweise zu WDM

Der Settingsdialog des Fireface 802 erlaubt es die Anzahl von WDM-Devices der persönlichen Arbeitsweise anzupassen. Ungestört vom System und Audio nur per ASIO – 0 WDM Devices auswählen. Wiedergabe von Systemaudio über das Fireface 802 - mindestens 1 Stereo Device aktivieren.

Die weitere Konfiguration dieser WDM Devices geschieht in Windows unter >Systemsteuerung/Sound <.

Das WDM Streaming Device *Lautsprecher* (Analog 1+2) des Treibers arbeitet wahlweise als normales Stereo-Device, oder als bis zu 8-Kanal Multichannel Device.

Für eine 8-Kanal Wiedergabe über den Windows Media Player ist unter > Systemsteuerung /Sound /Lautsprecher /Konfigurieren < das Lautsprechersetup 7.1 Surround zu wählen.

8.4 Anzahl der Kanäle mit WDM

Das Fireface kann ADAT optical mit bis zu 192 kHz Samplefrequenz nutzen. Dazu werden die Daten eines Kanals mittels *Sample Multiplexing* auf zwei oder vier Kanäle verteilt. Demzufolge stehen statt 8 nur noch 4 bzw. 2 Kanäle pro ADAT-Port zur Verfügung.

Wechselt das Fireface in den Double Speed (88,2/96 kHz) oder Quad Speed Modus (176,4/192 kHz) verschwinden die nicht mehr nutzbaren Devices automatisch.

WDM Stereodevice	Double Speed	Quad Speed
Fireface Analog (1+2)	Fireface Analog (1+2)	Fireface Analog (1+2)
Fireface Analog (3+4)	Fireface Analog (3+4)	Fireface Analog (3+4)
Fireface Analog (5+6)	Fireface Analog (5+6)	Fireface Analog (5+6)
Fireface Analog (7+8)	Fireface Analog (7+8)	Fireface Analog (7+8)
Fireface Analog (9+10)	Fireface Analog (9+10)	Fireface Analog (9+10)
Fireface Analog (11+12)	Fireface Analog (11+12)	Fireface Analog (11+12)
Fireface AES	Fireface AES	Fireface AES
Fireface ADAT 1 (1+2)	Fireface ADAT 1 (1+2)	Fireface ADAT 1 (1+2)
Fireface ADAT 1 (3+4)	Fireface ADAT 1 (3+4)	Fireface ADAT 1 (3+4)
Fireface ADAT 1 (5+6)	Fireface ADAT 1 (5+6)	Fireface ADAT 1 (5+6)
Fireface ADAT 1 (7+8)	Fireface ADAT 1 (7+8)	Fireface ADAT 1 (7+8)
Fireface ADAT 2 (1+2)	Fireface ADAT 2 (1+2)	Fireface ADAT 2 (1+2)
Fireface ADAT 2 (3+4)	Fireface ADAT 2 (3+4)	Fireface ADAT 2 (3+4)
Fireface ADAT 2 (5+6)	Fireface ADAT 2 (5+6)	Fireface ADAT 2 (5+6)
Fireface ADAT 2 (7+8)	Fireface ADAT 2 (7+8)	Fireface ADAT 2 (7+8)

Hinweis: Seit Windows Vista erscheint der analoge Ausgang 1/2 unter dem Namen Lautsprecher.

8.5 Multiclient-Betrieb

RME Audio Interfaces unterstützen Multiclient-Betrieb, also eine Nutzung mehrerer Programme gleichzeitig. Die Formate ASIO und WDM können sogar auf den gleichen Wiedergabekanälen beliebig gleichzeitig benutzt werden. Da WDM über eine Sample Rate Conversion in Echtzeit verfügt, ASIO jedoch nicht, müssen alle beteiligten ASIO-Programme die gleiche Samplefrequenz benutzen.

Übersichtlicher ist jedoch eine exklusive Nutzung der Kanäle pro Programm. Eine Einschränkung stellt dies nicht dar, da TotalMix ein beliebiges Ausgangsrouting, und damit eine Wiedergabe mehrerer Programme auf gleichen Hardwareausgängen ermöglicht.

Die Eingänge lassen sich bei WDM und ASIO gleichzeitig von beliebig vielen Programmen nutzen, da der Treiber die eingehenden Daten allen Programmen parallel zur Verfügung stellt.

Eine Besonderheit stellt RMEs Hi-End Tool *DIGICheck* dar. Es arbeitet als ASIO-Host, der mittels einer besonderen Technik auf in Benutzung befindliche Wiedergabekanäle zugreift. Daher kann DIGICheck sogar eine Analyse und Anzeige der Wiedergabedaten durchführen.

8.6 Aufnahme analog

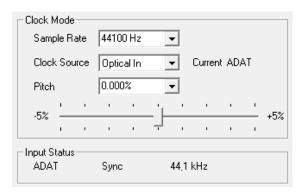
Aufnahmen über die analogen Eingänge gelingen nach Anwahl eines entsprechenden Aufnahmedevices (Fireface 802 Analog (x+y)) in der Aufnahmesoftware.

Die Eingangsempfindlichkeit kann für die rückwärtigen Eingänge über TotalMix (Input Channel Settings, Level) in zwei Stufen so verändert werden, dass sich eine gute Aussteuerung ergibt. Zusätzlich steht ein digitales Gain von 0 bis 12 dB zum Feinabgleich bereit. Eine weitere Optimierung lässt sich erzielen, wenn der Ausgangspegel des Signal-liefernden Gerätes angepasst wird. Eine optimale Aussteuerung erreicht man durch langsames Erhöhen des Pegels, bis die Peak Level Meter in TotalMix circa –3 dB anzeigen.

Der Pegel der vorderen Eingänge kann über die Gain-Potis optimiert werden. Hier steht zusätzlich eine zweifarbige Signal- und Clip-LED zur Aussteuerungskontrolle bereit.

Weitere Informationen enthält das Kapitel 19.

Oft ist es sinnvoll das Eingangssignal abzuhören oder weiterzuleiten. Der **TotalMix** Mischer des Fireface 802 erlaubt Latenz-freies Monitoring (siehe Kapitel 25).


Einen *gesteuerten* Echtzeit-Monitoring-Betrieb erlaubt Steinbergs ASIO Protokoll mit RMEs ASIO-Treibern und jedem ASIO 2.0 kompatiblen Programm. Nach Aktivierung der Option 'ASIO Direct Monitoring' erscheint ab Punch-In das Eingangssignal in Echtzeit am Ausgang.

8.7 Aufnahme Digital

Im Gegensatz zu analogen Soundkarten, welche auch ohne Eingangssignal eine leere (nur aus Rauschen bestehende) Wavedatei erzeugen, müssen digitale Interface-Systeme zum Start einer Aufnahme immer ein gültiges Eingangssignal erhalten.

Wegen dieser Besonderheit hat RME das Fireface 802 mit einer umfassenden Statusanzeige im Settingsdialog für Ein- und Ausgangssignal, welche Samplefrequenz, Lock und Sync Status anzeigt, sowie Status-Leuchtdioden für jeden Eingang versehen.

Die Anzeige der Samplefrequenz in den Feldern Clock Mode und Input Status bietet einen schnellen Überblick über die aktuelle Konfiguration von Karte und extern angeschlossenem Gerät. Liegt keine erkennbare Frequenz an erscheint 'No Lock'.

Damit wird eine Konfiguration der jeweiligen Software zur Durchführung einer digitalen Aufnahme zum Kinderspiel. Nach der Wahl des richtigen Eingangs das Fireface die aktuelle Samplefrequenz. Diese ist dann im Eigenschaftendialog des jeweiligen Aufnahme-Programms bzw. direkt im Settingsdialog einzustellen.

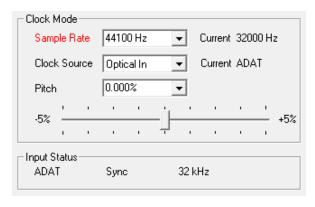
8.8 Clock Modi - Synchronisation

In der digitalen Welt sind Geräte immer Master (Taktgeber) oder Slave (Taktempfänger). Bei der Zusammenschaltung mehrerer Geräte muss es immer einen Master geben.

Ţ

Innerhalb eines digitalen Verbundes darf es nur einen Master geben! Ist beim Fireface der Clock Mode 'Internal' aktiv, müssen alle anderen Geräte Slave sein.

Das Fireface 802 besitzt eine besonders benutzerfreundliche, intelligente Clocksteuerung, genannt **AutoSync**. Im Modus AutoSync sucht das System ständig an allen Eingängen nach einem gültigen Digitalsignal. Wird ein gültiges Signal gefunden, schaltet das Gerät von der intern erzeugten Clock (Anzeige *Clock Source* – Current Internal) auf den aus dem Eingangssignal gewonnenen Takt um (Anzeige *Clock Source* - Current ADAT etc). Ein Unterschied zu üblichem Slave-Verhalten ist, dass bei Verlust des Referenzsignals sofort die interne Clock benutzt wird, das Fireface schaltet also in den Clock Mode Master.


AutoSync garantiert eine fehlerfreie Funktion in den Modi Record und Record while Play. In bestimmten Fällen, wie der direkten Verbindung der Ein- und Ausgänge eines DAT mit dem Fireface 802, kann AutoSync jedoch zu einer Rückkopplung des digitalen Carriers, und damit zu einem Verlust der Synchronisation führen. In solchen und ähnlichen Fällen ist das System manuell in den Clock Modus Master zu schalten (Clock Source – Internal).

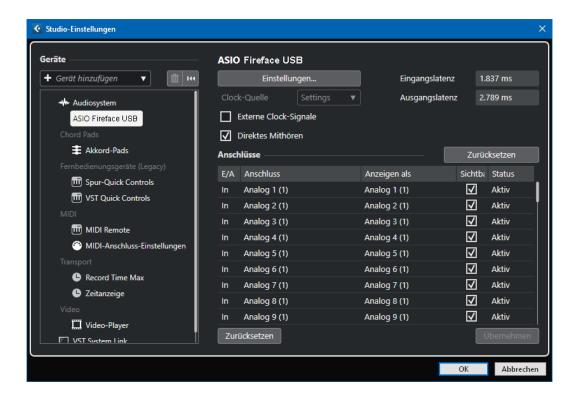
Beim Fireface 802 arbeiten die Eingänge ADAT optical und AES gleichzeitig. Da es keinen Eingangswahlschalter gibt, muss dem System zumindest die Synchronisationsquelle mitgeteilt werden (ein digitales Gerät kann seine Clock immer nur aus *einem* Eingang gewinnen). Über die Auswahl der Clock Source wird der Clock-Automatik ein bevorzugter Eingang vorgegeben. Dieser bleibt aktiv solange er ein gültiges Digitalsignal erhält.

Die Umschaltung der Clock Source ist manchmal unvermeidlich. Dazu ein Beispiel: Am ADAT-Eingang ist ein ADAT angeschlossen (ADAT wird damit sofort zur AutoSync Ref), an AES ein CD-Player. Nun möchten Sie kurz vom CD-Player ein paar Samples in den Rechner einspielen. Allerdings sind CD-Player in den wenigsten Fällen synchronisierbar. Daher wird die Übertragung mit Störgeräuschen versehen sein, da das Signal des CD-Players mit der Clock des ADAT eingelesen wird. In diesem Fall ist also kurzfristig die Clock Source auf AES umzustellen.

Das erstmalig in der RME Hammerfall eingesetzte Verfahren **SyncCheck** dient der einfachen Prüfung und Anzeige der aktuellen Clock-Situation. Die mit *Input Status* beschriftete Statusbox zeigt für Word Clock, ADAT und AES getrennt an, ob ein gültiges Signal anliegt, (No Lock, Lock), oder ob ein gültiges *und* synchrones Signal anliegt (Sync). Im Feld *Clock Source* wird rechts angezeigt, zu welchem Signal die Synchronität besteht (siehe auch Kapitel 38.1).

das Fireface unter WDM die Samplefrequenz selbst vorgibt bzw. vorgeben muss, kann es bei externer Clock zu dem im Bild dargestellten Fehler kommen. Es liegen stabil 32 kHz an (Sync), aber Windows Audio geht von 44100 Hz aus. Die rote Färbung der Beschriftung Sample Rate macht deutlich, dass hier 32000 Hz eingestellt werden sollte. Unter ASIO setzt die Audiosoftware die Sample Rate selbst, so dass dieser Fehl-Zustand nicht auftreten kann.

In der Praxis erlaubt SyncCheck einen sehr schnellen Überblick über die korrekte Konfiguration aller digitalen Geräte. Damit wird eines der schwierigsten und fehlerträchtigsten Themen der digitalen Studiowelt endlich für jedermann leicht beherrschbar.


9. Betrieb unter ASIO

9.1 Allgemeines

Nach dem Start der ASIO-Software ist in deren Audio-Einstellungen das Gerät oder der ASIO-Treiber **ASIO Fireface USB** zu wählen.

Das Fireface 802 unterstützt auch Direktes Mithören (ASIO Direct Monitoring).

Als MIDI I/O kann sowohl MME MIDI als auch DirectMusic MIDI benutzt werden

9.2 Anzahl der Kanäle mit ASIO

Bei einer Samplefrequenz von 88.2 oder 96 kHz arbeitet der ADAT optical Ein- und Ausgang im S/MUX Verfahren. Es stehen dann nur noch 4 ASIO ADAT Kanäle pro Port zur Verfügung.

Bei 176,4 oder 192 kHz arbeitet der ADAT optical Ein- und Ausgang im S/MUX4 Verfahren. Es stehen dann nur noch 2 ASIO ADAT Kanäle pro Port zur Verfügung.

<u>Hinweis</u>: Bei Änderungen der Sample Rate Range von/zu Single, Double und Quad Speed kommt es zu einer Änderung der Anzahl der in ASIO gelisteten Kanäle. Dies erfordert eventuell einen Reset der I/O-Liste in der Audiosoftware.

Single Speed	Double Speed	Quad Speed
Fireface Analog 1 bis 12	Fireface Analog 1 bis 12	Fireface Analog 1 bis 12
Fireface AES L / R	Fireface AES L / R	Fireface AES L / R
Fireface ADAT 1 bis 16	Fireface ADAT 1 bis 8	Fireface ADAT 1 bis 4

9.3 Bekannte Probleme

Wenn der verwendete Rechner keine ausreichende Rechenleistung, Transferraten über den USB-Bus und/oder PCI-Transferraten bereitstellt, kommt es zu Aussetzern, Knacken und Störgeräuschen. Hier hilft das Erhöhen der Latenz, also der Buffer Size im Settings Dialog des Fireface 802. Darüber hinaus sollten PlugIns bei auftretenden Problemen probeweise deaktiviert werden. Weitere Informationen enthält Kapitel 38.3.

Eine andere typische Störquelle ist falsche Synchronisation. ASIO unterstützt keinen asynchronen Betrieb. Das bedeutet: Eingangs- und Ausgangssignal müssen nicht nur gleiche Samplefrequenz besitzen, sondern sogar synchron sein. Daher müssen alle an das Fireface 802 angeschlossenen Geräte für funktionierenden Full Duplex Betrieb korrekt eingestellt sein. Solange SyncCheck im Settingsdialog nur *Lock*, nicht aber *Sync* meldet, ist das Gerätesetup fehlerhaft!

Gleiches gilt bei der Nutzung mehrerer Fireface 802: Sind diese nicht vollkommen synchron kommt es zu periodischen Störgeräuschen.

Fireface 802 unterstützt ASIO Direct Monitoring (ADM, ASIO direktes Mithören). Bitte beachten Sie, dass einige Programme ADM nicht vollständig unterstützen. Bekanntestes Problem ist die falsche Arbeitsweise des Panoramas eines Stereokanals. Vermeiden Sie es außerdem, die Hardware Ausgänge (dritte Reihe) in TotalMix FX als Mono-Kanäle zu konfigurieren. Dies zerstört in den meisten Fällen ADM-Kompatibilität.

Eine Drift zwischen Audio und MIDI, oder ein fester Versatz (MIDI Noten alle kurz vor oder hinter der korrekten Position) erfordern eine Änderung der Einstellungen in Cubase/Nuendo. Zur Drucklegung empfiehlt es sich die Option 'Use System Timestamp' zu aktivieren. Das Fireface 802 unterstützt MME MIDI und DirectMusic MIDI. Welches besser funktioniert hängt ganz von der jeweiligen Applikation ab.

10. Betrieb mehrerer Fireface 802

Die aktuellen Treiber unterstützen den Betrieb von bis zu drei Fireface 802. Dabei müssen alle Geräte synchron arbeiten, also per Wordclock oder AutoSync mit synchronen Signalen versorgt werden.

- Wenn eines der Firefaces im Clock Modus Master arbeitet, müssen die anderen im Modus AutoSync arbeiten, und vom Master-Gerät z.B. per Wordclock gesynct werden. Im Settingsdialog sind die Clock-Modi der einzelnen Geräte korrekt zu konfigurieren.
- Wenn die Geräte synchron mit Clock versorgt werden (also im Settingsdialog alle Sync zeigen), ist ein störungsfreier Betrieb mit allen Kanälen gleichzeitig möglich. Dies ist besonders einfach unter ASIO, da der Treiber alle Geräte zu einem zusammenfasst.

<u>Hinweis</u>: TotalMix befindet sich in der Hardware des jeweiligen Gerätes. Die bis zu drei Mischer sind daher getrennt, können direkt keine Daten austauschen, und daher auch nicht als ein gemeinsamer Mischer über alle Kanäle genutzt werden.

In der Praxis ist ein Mehrgerätebetrieb mit dem Fireface 802 oftmals schwierig, da jedes weitere Gerät durch die hohe Kanalzahl zu Problemen auf dem USB- oder FireWire-Bus führt. Sinnvoll ist der Anschluss externer Wandler an die ADAT I/Os des 802, was bis zu 16 Kanäle analoger Aufnahme und 16 Kanäle analoger Wiedergabe hinzufügt.

11. DIGICheck Windows

DIGICheck ist ein weltweit einmaliges Utility für Tests, Messungen und Analyse des digitalen Audio-Datenstroms. Die Windows-Software ist größtenteils selbsterklärend, enthält aber trotzdem eine ausführliche Online-Hilfe. DIGICheck 5.96 arbeitet als Multiclient ASIO Host, und kann daher parallel zu jeglicher Software, egal ob WDM oder ASIO, sowohl die Eingangs- als auch die Ausgangsdaten (!) anzeigen. DIGICheck bietet derzeit folgende Funktionen:

- Level Meter. Hoch präzise, 24 Bit Auflösung, 2/8/30 Kanäle. Anwendungsbeispiele: Spitzen-Pegelmessung, RMS-Pegelmessung, Over-Erkennung, Messung des Korrelationsgrades (Phase), Messung von Dynamik/Rauschspannungsabständen, Darstellung der Differenz RMS/Peak (Lautheit), Langzeit Spitzenwerterfassung. Input Check. Oversampling Mode für Pegel höher als 0 dBFS. Ausrichtung Vertikal oder Horizontal. Slow RMS und RLB Weighting Filter. K-system kompatibel.
- Hardware Level Meter f
 ür Input, Playback und Output. Amtliche Level Meter frei konfigurierbar, dabei praktisch ohne CPU-Last, da vom HDSP System berechnet.
- Spectral Analyser. Weltweit einmalige 10-, 20- oder 30-Band Darstellung in analoger Bandpass-Filter Technologie. 192 kHz-fähig!
- Vector Audio Scope. Weltweit einmaliges Phasenmessgerät mit dem typischen Nachleuchten einer Oszilloskop-Röhre, integriertem Korrelationsgradmesser und Level Meter.
- Totalyser. Spectral Analyser und Vector Audio Scope in einem Fenster.
- **Surround Audio Scope.** Professionelles Surround Level Meter mit erweiterter Korrelations-Analyse, ITU Weighting und ITU Summenmeter.
- ITU1770/EBU R128 Meter. Für standardisierte Lautheits-Messungen.
- **Bit Statistics & Noise**. Zeigt die tatsächliche Bit Auflösung, sowie Fehler und DC. Integrierte Signal to Noise Messung in dB und dBA, sowie DC-Messung.
- Channel Status Display. Detailierte Analyse und Klartext-Ausgabe der Channel Status Daten von SPDIF und AES.
- Global Record. Langzeitaufnahme aller Kanäle mit minimaler Systemlast.
- Komplett Multiclient. Öffnen Sie so viele Messfenster jeglicher Messfunktion auf jeglichen Kanälen und Ein- und Ausgängen wie Sie wollen!

DIGICheck ist kostenlos und arbeitet nur mit RME Interfaces. Es wird ständig erweitert. Die neueste Version befindet sich immer auf unserer Website **www.rme-audio.de**, Sektion **Downloads / Software**.

12. Hotline – Probleme - Lösungen

Neueste Informationen finden Sie auf unserer Website <u>www.rme-audio.de</u>, Abteilung FAQ, Neueste Ergänzungen.

Die 8 ADAT-Kanäle erscheinen nicht am optischen Ausgang

 Der optische Ausgang 2 wurde auf 'AES' geschaltet. Wie im Blockschaltbild Kapitel 39.1 zu sehen, existieren nach wie vor alle Kanäle und Zuordnungen, jedoch ist der optische Sender von ADAT2 abgeklemmt, und wird nun vom AES-Ausgang gespeist (welcher auf den Kanälen 13/14 liegt). Die ADAT2 Playback Devices sind trotzdem nutzbar, indem die entsprechenden Kanäle in TotalMix auf andere Ausgänge geroutet oder gemischt werden.

Die Wiedergabe funktioniert, aber die Aufnahme nicht:

- Überprüfen Sie, ob ein gültiges Eingangssignal vorhanden ist. In diesem Fall erfolgt eine Anzeige der aktuellen Samplefrequenz im Settingsdialog.
- Überprüfen Sie, ob das Fireface als aufnehmendes Gerät in der benutzten Software eingestellt ist.
- Überprüfen Sie, ob die Einstellung der Samplefrequenz in der Software (Aufnahme-Eigenschaften oder ähnliches) mit der des anliegenden Signales übereinstimmt.
- Überprüfen Sie, ob es sich um eine Schleifenverkabelung handelt, die Karte also auf Clock Mode Master zu schalten ist.

Die Aufnahme oder Wiedergabe ist mit Knistern gestört:

- Erhöhen Sie die Anzahl und Größe der Buffer im Settingsdialog bzw. der Software.
- Benutzen Sie andere Kabel (coaxial oder optisch) um Defekte derselben auszuschließen.
- Überprüfen Sie, ob es sich um eine Schleifenverkabelung handelt, die Karte also auf Clock Mode Master zu schalten ist.
- Überprüfen Sie ob im Settingsdialog Errors angezeigt werden.

Treiberinstallation und Settingsdialog/TotalMix funktionieren, aber eine Wiedergabe oder Aufnahme ist nicht möglich

 Aufnahme/Wiedergabe stellen höhere Ansprüche an die Bus- Kommunikation als reine Erkennung und Steuerung des Gerätes. Fehlerhafte USB-Kabel mit leicht eingeschränkter Übertragungsbandbreite können daher ein solches Fehlerbild verursachen.

Bedienungsanleitung

Fireface 802 FS

Installation und Betrieb – Mac OS X

13. Installation von Hardware, Treiber und Firmware

13.1 Installation von Hardware und Treiber

Nach dem Anschluss des Fireface 802 FS an den Computer installieren Sie die Treiber passend zum verwendeten macOS.

RME verbessert alle Treiber fortwährend. Laden Sie sich bitte die aktuellsten Treiber von der RME Website, http://rme.to/download, herunter. Nach dem Entpacken der heruntergeladenen ZIP-Datei startet die Installation durch einen Doppelklick auf **Fireface USB.pkg**. Die Installation erfolgt automatisch durch Doppelklick auf diese Datei.

Bei der Treiberinstallation werden auch die Programme **Totalmix** (TotalMix FX) und **Fireface USB Settings** in den Programme-Ordner kopiert, und erscheinen automatisch im Dock sobald ein Fireface angeschlossen wird. Ein Neustart ist nicht erforderlich.

Treiber-Updates erfordern keine Entfernung des vorherigen Treibers. Der neue Treiber kann einfach über den vorherigen installiert werden.

13.2 Deinstallation der Treiber

Bei Problemen ist auch ein manuelles Löschen aller Treiberdateien in den Papierkorb möglich:

USB

/Applications/Fireface USB Settings
/Applications/Totalmix
/Library/Extensions/RMEFirefaceUSB.kext
/Users/username/Library/Preferences/de.rme-audio.TotalmixFX.plist
/Users/username/Library/Preferences/de.rme-audio.Fireface_USB_Settings.plist
/Library/LaunchAgents/de.rme-audio.firefaceUSBAgent.plist

Im aktuellen Mac OS X ist der Ordner Library ausgeblendet. Um ihn sichtbar zu machen: Finder starten, auf Menüeintrag *Gehe zu* klicken, Taste Option/Alt drücken, auf *Library* klicken.

In den neuesten DriverKit Treibern ist der Treiber die RME Settings App im Ordner Programme. Das Löschen der Settings App löscht auch den Treiber vom System.

13.3 Firmware Update

Das Flash Update Tool aktualisiert die Firmware des Fireface 802 FS auf die jeweils neueste Version. Es erfordert einen installierten Treiber.

Starten Sie die App **Fireface USB Flash**. Das Flash Update Tool zeigt zunächst die aktuelle Version der Firmware des Fireface 802 FS, und ob diese aktualisiert werden sollte. Wenn ja, dann einfach den Knopf 'Update' drücken. Ein Balken zeigt den Fortgang des Updates und das Ende des Flash-Vorganges an (Verify Ok).

Nach dem Update muss das Fireface 802 FS resettet werden. Dies geschieht durch kurzes Ausschalten des Fireface. Ein Neustart des Rechners ist nicht erforderlich.

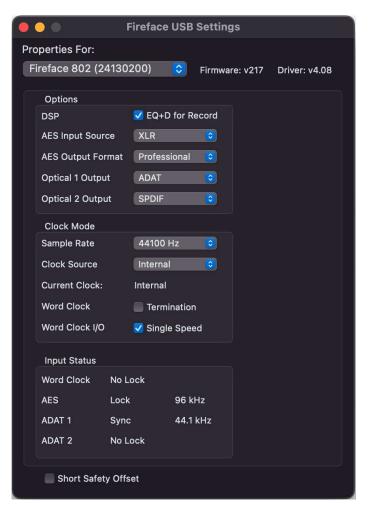
Sollte das Flashen fehlschlagen, wird ab dem nächsten Neustart ein im Fireface befindliches Not-BIOS benutzt. Das Gerät bleibt funktionsfähig, das Flashen kann erneut versucht werden.

14. Konfiguration des Fireface 802

14.1 Settingsdialog

Die Konfiguration des Fireface erfolgt über einen eigenen Settingsdialog, im Programm **Fireface USB Settings**. Der Mischer des Fireface (TotalMix FX) lässt sich über das Programm **Totalmix** aufrufen.

Die Hardware des Fireface 802 stellt eine Reihe hilfreicher, durchdachter und praxisgerechter Funktionen und Optionen bereit, mit denen der Betrieb gezielt den aktuellen Erfordernissen angepasst werden kann. Über 'Settings' besteht Zugriff auf:


- Arbeitsweise des DSP
- Konfiguration der digitalen I/Os
- Das Synchronisationsverhalten
- Status von Ein- und Ausgang
- Die aktuelle Samplefrequenz

Einstellungen im Settingsdialog werden in Echtzeit übernommen, sind also auch ohne das Schließen der Dialogbox aktiv.

Veränderungen an den Settings sollten aber möglichst nicht während laufender Wiedergabe oder Aufnahme erfolgen, da es sonst zu Störungen kommen kann.

Im Feld **Properties For** wird das zu konfigurierende Gerät ausgewählt.

Rechts davon ist sowohl die Firmwareversion als auch die aktuelle Treiberversion des Fireface 802 zu sehen.

Options

DSP - EQ+D for Record

Schaltet EQ und Dynamics aller Eingangskanäle in den Aufnahmeweg. Ist jedoch Loopback aktiv sind EQ und Dynamics des Ausgangskanals im Aufnahmeweg. Siehe auch Kapitel 27.6.

AES Input Source

Default: XLR. Bei Auswahl von Optical 2 wird ein am Eingang ADAT 2 anliegendes SPDIF-Signal auf den Eingangskanal AES geschaltet, siehe auch Blockschaltbild in Kapitel 39.1. Das Eingangssignal der AES XLR-Buchse steht dann nicht mehr zur Verfügung.

AES Output Format

Das AES-Ausgangssignal kann mit dem Channel Status Professional oder Consumer (SPDIF) versehen werden. Näheres enthält Kapitel 21.2.

Optical 1 Out

Dieser optische TOSLINK-Ausgang kann als ADAT- oder SPDIF-Ausgang arbeiten. ADAT beinhaltet Kanäle 15-22, SPDIF Kanäle 15/16. Im Modus SPDIF sind die Ausgangskanäle 17-22 nur noch per Loopback nutzbar.

Optical 2 Out

Dieser optische TOSLINK-Ausgang kann als ADAT- oder SPDIF-Ausgang arbeiten. ADAT beinhaltet Kanäle 23-30, SPDIF Kanäle 23/24. Im Modus SPDIF sind die Ausgangskanäle 25-30 nur noch per Loopback nutzbar. Bei Auswahl von AES wird das Ausgangssignal des AES-Kanals (XLR) auch optisch als SPDIF ausgegeben.

Clock Mode

Sample Rate

Setzt die aktuell verwendete Samplefrequenz. Dies ist die gleiche Einstellung wie im Audio-MIDI Setup, sie wurde zur komfortableren Bedienung auch im Settingsdialog implementiert.

Clock Source

Das Gerät kann als Clock-Quelle seine eigene Clock (Internal = Master) oder eines der Eingangssignale Word, AES, ADAT/SPDIF1, ADAT/SPDIF2) verwenden. Steht die externe Clock-Quelle nicht zur Verfügung (Input Status No Lock), wechselt das Gerät automatisch zur nächsten verfügbaren (dieses Verhalten wird AutoSync genannt). Steht keine zur Verfügung wird die interne Clock benutzt. Die aktuelle Clock-Quelle wird rechts als *Current* angezeigt.

Word Clock - Termination

Terminiert den Wordclock-Eingang intern mit 75 Ohm.

Word Clock I/O - Single Speed

Das Wordclock-Ausgangssignal entspricht normalerweise der aktuellen Samplefrequenz. Nach Anwahl von *Single Speed* wird die Frequenz angepasst, so dass sie immer im Bereich 32 – 48 kHz ist. Bei 96 kHz und 192 kHz Samplefrequenz wird also 48 kHz ausgegeben.

Der Wordclock-Eingang passt sich normalerweise den Frequenzbereichen an. So kann 48 kHz Word auch zur Synchronisation der internen Clock bei 96 und 192 kHz dienen. Ist die Option Single Speed aktiv folgt die Samplefrequenz des UFX III jedoch direkt der anliegenden, über Single, Double und Quad Speed hinweg. Ein Wordclock-Signal mit 192 kHz bewirkt also eine interne Samplefrequenz von 192 kHz. Dieses Merkmal wird auch Follow Clock genannt.

Input Status

Zeigt für die Eingänge Word, AES, Optical 1 und Optical 2 getrennt an, ob ein gültiges Signal anliegt, (No Lock, Lock), oder ob ein gültiges *und* synchrones Signal anliegt (Sync). In der dritten Spalte erscheint die von der Hardware erkannte Samplefrequenz (sehr grobe Erkennung, 32 kHz, 44,1 kHz, 48 kHz etc.). Im Feld *Current Clock* wird angezeigt, zu welchem Signal die Synchronität besteht. Siehe auch Kapitel 38.1.

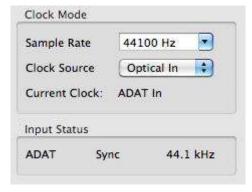
Short Safety Offset

Verringert die Latenz durch einen kleineren Safety Offset. Umstellung erfolgt in Echtzeit. Kleine Safety Offsets können zu Knacksern oder Aussetzern führen.

14.2 Clock Modi - Synchronisation

In der digitalen Welt sind Geräte immer Master (Taktgeber) oder Slave (Taktempfänger). Bei der Zusammenschaltung mehrerer Geräte muss es immer einen Master geben.

7


Innerhalb eines digitalen Verbundes darf es nur einen Master geben! Ist beim Fireface 802 der Clock Mode 'Master' aktiv, müssen alle anderen Geräte Slave sein.

Das Fireface 802 besitzt eine besonders benutzerfreundliche, intelligente Clocksteuerung, genannt **AutoSync**. Im Modus AutoSync sucht das System ständig an allen Eingängen nach einem gültigen Digitalsignal. Wird ein gültiges Signal gefunden, schaltet das Gerät von der intern erzeugten Clock (Anzeige *Clock Source* – Current Internal) auf den aus dem Eingangssignal gewonnenen Takt um (Anzeige *Clock Source* - Current ADAT etc). Ein Unterschied zu üblichem Slave-Verhalten ist, dass bei Verlust des Referenzsignals sofort die interne Clock benutzt wird, das Fireface schaltet also in den Clock Mode Master.

AutoSync garantiert eine fehlerfreie Funktion in den Modi Record und Record while Play. In bestimmten Fällen, wie der direkten Verbindung der Ein- und Ausgänge eines DAT mit dem Fireface 802, kann AutoSync jedoch zu einer Rückkopplung des digitalen Carriers, und damit zu einem Verlust der Synchronisation führen. In solchen und ähnlichen Fällen ist das System manuell in den Clock Modus 'Master' zu schalten (Clock Source – Internal).

Beim Fireface 802 arbeiten die Eingänge ADAT optical und AES gleichzeitig. Da es keinen Eingangswahlschalter gibt, muss dem System zumindest die Synchronisationsquelle mitgeteilt werden (ein digitales Gerät kann seine Clock immer nur aus einem Eingang gewinnen). Über die Auswahl der Clock Source wird der Clock-Automatik ein bevorzugter Eingang vorgegeben. Dieser bleibt aktiv solange er ein gültiges Digitalsignal erhält.

Die Umschaltung der Clock Source ist manchmal unvermeidlich. Dazu ein Beispiel: Am ADAT-Eingang ist ein ADAT angeschlossen (ADAT wird damit sofort zur AutoSync Ref), an AES ein CD-Player. Nun möchten Sie kurz vom CD-Player ein paar Samples in den Rechner einspielen. Allerdings sind CD-Player in den wenigsten Fällen synchronisierbar. Daher wird die Übertragung mit Störgeräuschen versehen sein, da das Signal des CD-Players mit der Clock des ADAT eingelesen wird. In diesem Fall ist also kurzfristig die Clock Source auf AES umzustellen.

Das erstmalig in der RME Hammerfall eingesetzte Verfahren **SyncCheck** dient der einfachen Prüfung und Anzeige der aktuellen Clock-Situation. Die mit Input Status beschriftete Statusbox zeigt für die Eingänge ADAT, AES und Word Clock getrennt an, ob kein Signal (No Lock), ein gültiges Signal (Lock), oder ob ein gültiges *und* synchrones Signal anliegt (Sync). Im Feld *Clock Mode* wird angezeigt zu welchem Signal die Synchronität besteht (siehe auch Kapitel 38.1).

In der Praxis erlaubt SyncCheck einen sehr schnellen Überblick über die korrekte Konfiguration aller digitalen Geräte. Damit wird eines der schwierigsten und fehlerträchtigsten Themen der digitalen Studiowelt endlich für jedermann leicht beherrschbar.

15. Mac OS X FAQ

15.1 MIDI funktioniert nicht

In einigen Fällen erscheint in der Anwendungssoftware kein MIDI-Port. Der Grund zeigt sich normalerweise in der **Audio-MIDI Konfiguration**. Dort ist entweder gar kein MIDI-Gerät vorhanden, oder das vorhandene ist ausgegraut. In den meisten Fällen reicht es aus, das ausgegraute Gerät zu entfernen (also zu löschen), und neu suchen zu lassen.

Das Fireface 802 ist Class Compliant. Daher benutzt es keinen eigenen MIDI-Treiber, sondern wird von OS X als MIDI-Interface erkannt, und automatisch mit dem in OS X enthaltenen MIDI-Treiber betrieben.

15.2 Zugriffsrechte reparieren

Die Reparatur der Zugriffsrechte kann Probleme mit dem Installationsprozess beseitigen – und auch viele andere. Dazu wird über **Dienstprogramme** das **Festplatten-Dienstprogramm** gestartet. Markieren Sie links ihr Boot-Volume beziehungsweise ihre Systemplatte. Rechts unter **Erste Hilfe** lassen sich nun die Zugriffsrechte sowohl prüfen als auch reparieren.

15.3 Unterstützte Samplefrequenzen

RMEs Mac OS X Treiber stellt grundsätzlich alle Samplefrequenzen bereit, die die jeweilige Hardware unterstützt. Dazu gehören neben 32 kHz und 64 kHz auch 96 kHz und 192 kHz.

Allerdings stellen nicht alle Programme auch alle möglichen Samplefrequenzen zur Verfügung. Die tatsächlichen Möglichkeiten der Hardware können bequem in der **Audio-MIDI Konfiguration** überprüft werden. Dazu ist unter **Audio-Geräte** im Bereich **Eigenschaften für:** das Fireface auszuwählen. Ein Klick auf **Format** öffnet ein Dropdown-Menü, welches alle verfügbaren Samplefrequenzen auflistet.

15.4 Anzahl der Kanäle mit Core Audio

Mit dem Fireface ist es möglich über die ADAT optical Schnittstelle bis zu 96 kHz Samplefrequenz zu nutzen, also auf einem handelsüblichen ADAT-Rekorder aufzuzeichnen. Dazu werden die Daten eines Kanals mittels *Sample Multiplexing* auf zwei Kanäle verteilt. Demzufolge stehen statt 8 nur noch 4 Kanäle pro ADAT-Port zur Verfügung.

Änderungen der Anzahl der Core Audio-Kanäle sind ohne einen Neustart des Rechners nicht ohne weiteres möglich. Wechselt das Fireface in den Double Speed (88,2/96 kHz) oder Quad Speed Modus (176,4/192 kHz) bleiben die Core Audio-Kanäle alle erhalten, sind jedoch teilweise inaktiv.

Single Speed	Double Speed	Quad Speed
Fireface Analog 1 bis12	Fireface Analog 1 bis 12	Fireface Analog 1 bis 12
Fireface AES	Fireface AES	Fireface AES
Fireface ADAT 1 bis 16	Fireface ADAT 1 bis 8	Fireface ADAT 1 bis 4

15.5 Diverses

Der Treiber des Fireface 802 erfordert mindestens Mac OS 10.12.

Programme, die keine Karten- und/oder Kanalauswahl unterstützen, verwenden immer den Eingang und Ausgang des unter **Systemeinstellungen - Ton** gewählten Geräts.

Über **Launchpad – Other – Audio-MIDI-Setup** kann das Fireface für die Nutzung im System detaillierter konfiguriert werden.

Programme, die keine Kanalauswahl unterstützen, verwenden immer die Kanäle 1/2, also das erste Eingangspaar. Um andere Eingänge nutzen zu können hilft folgender Workaround per TotalMix: gewünschtes Eingangssignal auf Ausgangskanal 1/2 routen. In den Channel Settings von Ausgang 1/2 Loopback aktivieren. Ergebnis: Das gewünschte Eingangsignal liegt jetzt unverzögert am Eingang Kanal 1/2 an.

Über **Lautsprecher konfigurieren** lässt sich die Stereo – oder Mehrkanal-Wiedergabe auf jeden beliebigen Kanal festlegen.

16. Betrieb mehrerer Firefaces 802 FS

OS X erlaubt die Verwendung von mehr als einem Audiogerät und deren gleichzeitige Nutzung in einem Programm. Dies geschieht über die Funktion **Aggregate Devices**, mit dem sich mehrere Geräte zu einem zusammenfassen lassen.

Die Treiber unterstützen den Betrieb von bis zu drei Fireface 802. Dabei müssen alle Geräte synchron arbeiten, also per Wordclock oder AutoSync mit synchronen Signalen versorgt werden.

- Wenn eines der Firefaces im Clock Mode Master arbeitet, müssen die anderen im Mode Slave arbeiten, und vom Master-Gerät z.B. per Wordclock gesynct werden. Im Settingsdialog sind die Clock-Modi der einzelnen Geräte korrekt zu konfigurieren.
- Wenn die Geräte synchron mit Clock versorgt werden (also im Settingsdialog alle Sync zeigen), ist ein störungsfreier Betrieb mit allen Kanälen gleichzeitig möglich.

<u>Hinweis:</u> TotalMix befindet sich in der Hardware des jeweiligen Fireface. Die bis zu drei Mischer sind daher getrennt, können direkt keine Daten austauschen, und daher auch nicht als ein gemeinsamer Mischer über alle Kanäle genutzt werden.

In der Praxis ist ein Mehrgerätebetrieb mit dem Fireface 802 oftmals schwierig, da jedes weitere Gerät durch die hohe Kanalzahl zu Problemen auf dem USB- oder FireWire-Bus führt. Sinnvoll ist der Anschluss externer Wandler an die ADAT I/Os des 802, was bis zu 16 Kanäle analoger Aufnahme und 16 Kanäle analoger Wiedergabe hinzufügt.

17. DIGICheck NG Mac

DIGICheck ist ein weltweit einmaliges Utility für Tests, Messungen und Analyse des digitalen Audio-Datenstroms. Die Software ist größtenteils selbsterklärend, enthält aber trotzdem eine ausführliche Online-Hilfe. DIGICheck NG 0.891 arbeitet parallel zu jeglicher Software und kann derzeit alle Eingangsdaten anzeigen. DIGICheck bietet aktuell folgende Funktionen:

- Level Meter. Hoch präzise, 24 Bit Auflösung, 2/8/30 Kanäle. Anwendungsbeispiele: Spitzen-Pegelmessung, RMS-Pegelmessung, Over-Erkennung, Messung des Korrelationsgrades (Phase), Messung von Dynamik/Rauschspannungsabständen, Darstellung der Differenz RMS/Peak (Lautheit), Langzeit Spitzenwerterfassung. Input Check. Oversampling Mode für Pegel höher als 0 dBFS. Ausrichtung Vertikal oder Horizontal. Slow RMS und RLB Weighting Filter. K-system kompatibel.
- Hardware Level Meter f
 ür Input, Playback und Output. Amtliche Level Meter frei konfigurierbar, dabei praktisch ohne CPU-Last, da vom Fireface berechnet.
- Spectral Analyser. Weltweit einmalige 10-, 20- oder 30-Band Darstellung in analoger Bandpass-Filter Technologie. 192 kHz-fähig!
- Vector Audio Scope. Weltweit einmaliges Phasenmessgerät mit dem typischen Nachleuchten einer Oszilloskop-Röhre, integriertem Korrelationsgradmesser und Level Meter.
- Totalyser. Spectral Analyser und Vector Audio Scope in einem Fenster.
- Surround Audio Scope. Professionelles Surround Level Meter mit erweiterter Korrelations-Analyse, ITU-Gewichtung und ITU-Summenmeter.
- ITU1770/EBU R128 Meter. Für standardisierte Lautheits-Messungen.
- **Bit Statistics & Noise**. Zeigt die tatsächliche Bit Auflösung, sowie Fehler und DC. Integrierte Signal to Noise Messung in dB und dBA, sowie DC-Messung.
- Komplett Multiclient. Öffnen Sie so viele Messfenster jeglicher Messfunktion auf jeglichen Kanälen wie Sie wollen!

DIGICheck wird ständig aktualisiert. Die neueste Version befindet sich immer auf unserer Website **www.rme-audio.de**, Sektion **Downloads / Software**.

18. Hotline - Probleme - Lösungen

Neueste Informationen finden Sie auf unserer Website www.rme-audio.de, Abteilung Support

Karte und Treiber ordnungsgemäß installiert, jedoch keine Wiedergabe möglich:

- Ist Fireface 802 im System Profiler gelistet? (Vendor ID 2613).
- Ist Fireface 802 als aktuelles Wiedergabegerät in der abspielenden Software gewählt?

Die 8 ADAT-Kanäle erscheinen nicht am optischen Ausgang

 Der optische Ausgang 2 wurde auf 'AES' geschaltet. Wie im Blockschaltbild in Kapitel 39.1 zu sehen existieren nach wie vor alle Kanäle und Zuordnungen, jedoch ist der optische Sender von ADAT2 abgeklemmt, und wird nun vom AES-Ausgang gespeist (welcher auf den Kanälen 13/14 liegt). Die ADAT2 Playback Devices sind trotzdem nutzbar, indem die entsprechenden Kanäle in TotalMix auf andere Ausgänge geroutet oder gemischt werden.

Die Wiedergabe funktioniert, aber die Aufnahme nicht

- Überprüfen Sie, ob ein gültiges Eingangssignal vorhanden ist. In diesem Fall erfolgt eine Anzeige der aktuellen Samplefrequenz im Settingsdialog.
- Überprüfen Sie, ob das Fireface als aufnehmendes Gerät in der Software eingestellt ist.
- Überprüfen Sie, ob die Einstellung der Samplefrequenz in der Software (Aufnahme-Eigenschaften oder ähnliches) mit der des anliegenden Signales übereinstimmt.
- Überprüfen Sie, ob es sich um eine Schleifenverkabelung handelt, die Karte also auf Clock Mode Master zu schalten ist.

Die Aufnahme oder Wiedergabe ist mit Knistern gestört

- Erhöhen Sie die Anzahl und Größe der Buffer in der Software.
- Benutzen Sie andere Kabel (coaxial oder optisch) um Defekte derselben auszuschließen.
- Überprüfen Sie, ob es sich um eine Schleifenverkabelung handelt, die Karte also auf Clock Mode Master zu schalten ist.
- Überprüfen Sie ob im Settingsdialog Errors angezeigt werden.

Mögliche Ursachen für ein nicht funktionierendes Fireface

Das USB-Kabel ist gar nicht oder nicht korrekt eingesteckt

Treiberinstallation und Settingsdialog/TotalMix funktionieren, aber eine Wiedergabe oder Aufnahme ist nicht möglich

Aufnahme/Wiedergabe stellen höhere Ansprüche an die Bus-Kommunikation als reine Erkennung und Steuerung des Gerätes. Fehlerhafte USB-Kabel mit leicht eingeschränkter Übertragungsbandbreite können daher ein solches Fehlerbild verursachen.

Bedienungsanleitung

Fireface 802 FS

DESTRUCTION Eingänge und Ausgänge

19. Analoge Eingänge

19.1 Line Hinten

Das Fireface besitzt auf der Rückseite 8 symmetrische Line-Eingänge in Form von 6,3 mm Stereo-Klinkenbuchsen. Die elektronische Eingangsschaltung arbeitet servosymmetrisch. Sie kann sowohl symmetrische (Stereo-Klinkenstecker) als auch unsymmetrische (Mono-Klinkenstecker) Eingangssignale korrekt verarbeiten, bei unveränderter Pegelreferenz.

1

Bei Verwendung von unsymmetrischen Verbindungen mit Stereo-Klinkensteckern sollte deren Anschluss 'Ring' mit Masse verbunden sein, da es sonst zu Störgeräuschen durch den offenen negativen Eingang der symmetrischen Eingangsstufe kommen kann.

Der wichtigste Punkt bei einem AD-Wandler ist die korrekte Anpassung des Eingangspegels, damit der Wandler stets im optimalen Arbeitsbereich betrieben wird. Deshalb besitzt das Fireface intern hochwertige elektronische Schalter, mit denen sich alle Eingänge einzeln an gebräuchliche Arbeitspegel anpassen lassen. Das UFX III stellt +13 dBu und +19 dBu mit 12 dB variablem Gain bereit:

Referenz	0 dBFS @	Headroom	Gain
Lo Gain	+19 dBu	15 dB	0 dB
+4 dBu	+13 dBu	9 dB	0 dB
-10 dBV	+2 dBV	12 dB	+4 dBu mit 8,5 dB

Die obigen Pegel finden sich auch in allen anderen RME-Geräten. Damit sind diese vollständig kompatibel zueinander. Ein Referenzpegel von -10 dBV lässt sich mittels +4 dBu Referenz plus Gain 8.5 dB (mit dem Gain-Poti in den TotalMix FX Kanaleinstellungen) realisieren.

19.2 Mikrofon / Line / Inst Vorne

Die vier servosymmetrischen Mikrofoneingänge des Fireface 802 weisen Combo Klinken-/XLR-Buchsen auf. Eine zweifarbige Signal-LED zeigt pro Kanal vorhandenes Signal (grün, ab –42 dBFS) und Übersteuerung (rot, 0 dBFS).

XLR

Der Verstärkungsbereich für XLR beträgt 54 dB, stufenlos von +6 dB bis +60 dB. Dies entspricht einer Empfindlichkeit von +10 dBu bis hinunter zu -44 dBu, bezogen auf Vollaussteuerung des AD-Wandlers. Die einzeln und weich zuschaltbare, hochstrom-feste Phantomspeisung (48 Volt) sorgt für einen professionellen Umgang mit Kondensatormikrofonen. Die Verwendung eines Hi-End Schaltkreises (That 1510) garantiert herausragende Klangqualität, niedrigsten Klirrfaktor und maximalen Rauschabstand in allen Verstärkungseinstellungen. Der XLR-Eingang kann bis zu einem Pegel von +10 dBu auch als symmetrischer Line-In dienen.

Klinke

Der alternativ nutzbare unsymmetrische Mono-Klinken Line-Eingang macht das Fireface 802 noch flexibler. Mit 800 kOhm Eingangswiderstand (Hi-Z), Klinkenbuchse und Verstärkungseinstellung über einen Bereich von 54 dB, sind die frontseitigen Eingänge mit Keyboards, Samplern, CD-Playern, Gitarren und vielem mehr optimal zu nutzen. Dieser Eingang verarbeitet Pegel von –33 dBu bis hinauf zu +21 dBu. Damit ist der Klinkeneingang ein echter Vollpegeleingang auch für hohe Linepegel, und kann auch als Line Gain-Amp genutzt werden.

Die Klinkenbuchsen sind phantomspannungsfrei.

20. Analoge Ausgänge

20.1 Line

Die kurzschlussfesten und niederohmigen symmetrischen Line-Ausgänge der Kanäle 1 bis 8 sind in Form von 6,3 mm Stereo-Klinkenbuchsen realisiert. Die elektronische Ausgangsschaltung arbeitet servosymmetrisch. Sie kann sowohl symmetrisch (Stereo-Klinkenstecker) als auch unsymmetrisch (Mono-Klinkenstecker) betrieben werden.

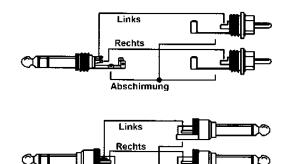
Um den analogen Ausgang optimal an nachfolgende Geräte anpassen zu können besitzt das Fireface intern hochwertige elektronische Schalter, mit denen sich alle Ausgänge an die gebräuchlichsten Arbeitspegel anpassen lassen.

Wie die analogen Eingangspegel sind auch die analogen Ausgangspegel des Fireface so ausgelegt, dass sie mit möglichst allen Geräten störfrei zusammenarbeiten. Der Headroom des Fireface beträgt daher je nach Referenzpegel zwischen 9 und 15 dB:

Referenz	0 dBFS @	Headroom
Hi Gain	+19 dBu	15 dB
+4 dBu	+13 dBu	9 dB
-10 dBV	+2 dBV	12 dB

Die obigen Pegel finden sich auch in allen anderen RME-Geräten. Damit sind diese vollständig kompatibel zueinander.

20.2 Kopfhörer / Line Out


Die Kanäle 9-12 des Fireface stehen per Stereo-Klinkenbuchsen auf der Front zur Verfügung. Diese Ausgänge sind mit den gleichen Wandlern bestückt wie die Line-Ausgänge, und erreichen daher die gleichen technischen Daten.

Der Ausgangspegel wird stufenlos über das Poti VOL verändert. Der Ausgang ist außerdem besonders niederohmig, und daher für den Einsatz mit Kopfhörern prädestiniert. Er ist jedoch auch als hoch-qualitativer, jedoch unsymmetrischer Line-Ausgang nutzbar.

Die Einstellung des Ausgangspegels, sprich der Lautstärke, erfolgt - neben dem Volume-Poti – auch über TotalMix (Hardware Output, PH 9/10 und PH 11/12).

Bei Verwendung als Line-Ausgang ist im Allgemeinen ein Adapter von Stereo-Klinke auf zwei Mono-Klinken oder Cinchstecker erforderlich.

Die Belegung folgt internationalem Standard, der linke Kanal liegt auf der Spitze des Klinkensteckers, der rechte Kanal auf dem Ring.

Abschirmung

20.3 DC-gekoppelte Ausgänge (CV/Gate)

Bis auf die Kopfhörerausgänge sind alle analogen Ausgänge des 802 FS DC-gekoppelt. Üblich ist eine AC-Kopplung per Kondensator, sowohl direkt nach dem DAC-Chip als auch direkt an der Ausgangsbuchse. Dies verhindert einen festen DC-Anteil am Ausgang, der negative Effekte wie Popp-Geräusche bis hin zu Fehlfunktionen in weiteren, ebenfalls DC-gekoppelten Geräten verursachen könnte. Es dient aber auch als Schutz vor DC von außen.

Eine DC-Kopplung hat den offensichtlichen Vorteil, den Ausgang bis herunter zu 0 Hz Pegellinear arbeiten zu lassen. Selbst bei extrem tiefem Bass (16 Hz) werden Phasenverschiebungen vermieden. DC-gekoppelte Eingänge sind selten, insbesondere bei Endstufen, so dass ein eventueller DC-Offset normalerweise keine schwerwiegenden Probleme verursacht.

Um die Ausgänge stabil und zuverlässig (robust) DC-gekoppelt zu realisieren wurde bei der Schaltung auf geringe DC-Offsets und ausreichenden Überspannungsschutz geachtet. Dass dies funktioniert beweist seit Jahren nicht nur RMEs ADI-Serie.

DC erzeugen zu können ist in der Messtechnik, auch im Zusammenhang mit Audio, durchaus nützlich. DC-Kopplung ist jedoch besonders begehrt im Zusammenspiel mit elektronischen Klangerzeugern (Synthesizer). Diese besitzen einen Eingang der über eine DC-Spannung die Tonhöhe als auch andere Funktionen steuern kann. Control Voltage, kurz CV, oft auch CV/Gate (Gate bestimmt Ton an oder aus), CV Filter etc. basiert meist auf dem Spannungsbereich 0 bis +5 Volt. Kann ein Audiointerface solche Gleichspannungen ausgeben dann lassen sich Synthesizer über passende Software und die analogen Ausgänge des Audiointerface steuern.

Die im 802 FS verwendeten DA-Wandler und analogen Ausgangsstufen weisen eine sehr geringe DC-Drift auf, und erzeugen die DC-Spannungen sehr zuverlässig reproduzierbar, sind also für diesen Einsatz sehr gut geeignet.

Polarität - Phase

Da die Ausgänge (natürlich) eine korrekte Polarität aufweisen, und TotalMix DC vollständig unterstützt (per Fader und Level Meter), erscheint beim Ausgeben eines digitalen positiven DCs auch eine positive Spannung am analogen Ausgang. Wie hoch diese ist lässt sich vor Ort mit jedem einfachen Multimeter relativ genau nachmessen.

Negative Ausgangsspannungen sollten vermieden werden, da diese theoretisch zu Defekten im CV-Eingang führen könnten. Selbst wenn die verwendete Software nur positive Signale ausgibt kann eine simple Phasendrehung in TotalMix das Signal invertieren, so dass eine negative Spannung ausgegeben wird.

Spannungsbereiche

Line Out 1-8, unsymmetrisch (Monoklinke), unbelastet:

HiGain (+19 dBu): 9,5 V, +4 dBu (+13 dBu): +4,75 V, -10 dBV (+4 dBu): +1,7 V

<u>Hinweis</u>: Die Level Meter in TotalMix zeigen ab Werk DC 3 dB höher an. Dies lässt sich über die Abschaltung der Option *Settings – Level Meters – RMS +3 dB* in TotalMix FX ändern.

21. Digitale Anschlüsse

21.1 ADAT (SPDIF Optical)

Die ADAT optical Eingänge des Fireface 802 FS sind kompatibel zu allen Geräten mit einer solchen Schnittstelle. RMEs unübertroffene Bitclock PLL verhindert selbst im extremen Varipitch-Betrieb Aussetzer und Knackser während der Aufnahme und Wiedergabe, und bietet blitzschnellen und jitterarmen, samplegenauen Lock auf das digitale Eingangssignal. Der Anschluss erfolgt über handelsübliches Optokabel (TOSLINK).

ADAT1 IN

Anschluss des ersten oder einzigen Gerätes welches ein ADAT-Signal zum Fireface 802 sendet. Übertragung der Kanäle 1 bis 8. Bei Zuspielung eines Double Speed Signals enthält dieses die Kanäle 1 bis 4, bei Quad Speed die Kanäle 1 und 2. Auch als SPDIF-Eingang nutzbar.

ADAT2 IN

Anschluss des zweiten Gerätes welches ein ADAT-Signal zum Fireface 802 sendet. Übertragung der Kanäle 9 bis 16. Bei Zuspielung eines Double Speed Signales enthält dieses die Kanäle 5 bis 8, bei Quad Speed* die Kanäle 3 und 4. Auch als SPDIF-Eingang nutzbar.

ADAT1 Out

Anschluss des ersten oder einzigen Gerätes welches ein ADAT-Signal vom 802 FS empfängt. Übertragung der Kanäle 1 bis 8. Bei Ausspielung eines Double Speed Signales enthält dieses die Kanäle 1 bis 4, bei Quad Speed die Kanäle 1 und 2. Optional als SPDIF-Ausgang nutzbar.

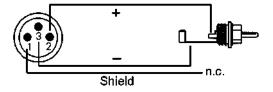
ADAT2 Out

Anschluss eines zweiten Gerätes welches ein ADAT-Signal vom Fireface 802 empfängt. Übertragung der Kanäle 9 bis 16. Bei Ausspielung eines Double Speed Signales enthält dieses die Kanäle 5 bis 8, bei Quad Speed* die Kanäle 3 und 4. Optional als SPDIF-Ausgang nutzbar.

* Mit Windows USB ist beim Fireface 802 die Geamtkanalzahl am Eingang bei 192 kHz auf 16 begrenzt. Daher steht ADAT 3/4 bei 176,4 kHz und 192 kHz leider nicht zur Verfügung, auch nicht wenn SPDIF an ADAT2 anliegt.

21.2 **AES**

Das Fireface 802 stellt einen AES/EBU Ein- und Ausgang per XLR bereit. Der Anschluss erfolgt über symmetrisches Kabel mit XLR-Steckverbindern. Beide sind trafosymmetriert und galvanisch getrennt. Der Channel Status am Eingang bleibt unberücksichtigt.


AES/EBU (und SPDIF) können eine Emphasis-Kennung enthalten. Mit Emphasis versehenes Audiomaterial besitzt eine starke Höhenanhebung, und erfordert daher bei der Wiedergabe eine Höhenabsenkung.

1

Eine Emphasis-Kennung geht verloren. Diese Information wird weder an eine aufnehmende Software, noch an einen der Ausgänge weitergereicht!

Eingang

Dank einer hochempfindlichen Eingangsstufe lässt sich unter Zuhilfenahme eines einfachen Kabeladapters (XLR/Cinch) auch SPDIF koaxial anlegen. Dazu werden die Pins 2 und 3 eines XLR-Steckers einzeln mit den beiden Anschlüssen eines Cinch-Steckers verbunden. Die abschirmende Masse des Kabels ist nur an Pin 1 des XLR-Steckers anzuschließen.

Ausgang

Mittels des oben beschriebenen Kabeladapters XLR/Cinch lassen sich auch Geräte mit koaxialer SPDIF-Schnittstelle an den AES-Ausgang des Fireface 802 anschließen. Allerdings akzeptieren viele Consumergeräte mit Cinch-Eingängen (SPDIF) nur Signale mit dem Channel Status 'Consumer'. Die Umschaltung geschieht über den Settingsdialog. In der Stellung Consumer wird außerdem die Ausgangsspannung reduziert, da SPDIF eine geringere Spannung als AES/EBU fordert.

Die ausgangsseitige Kennung des Fireface 802 FS wurde entsprechend AES3-1992 Amendment 4 implementiert:

- 32 / 44.1 / 48 kHz, 64 / 88.2 / 96 kHz, 176.4 / 192 kHz je nach Samplefrequenz
- Audio use
- No Copyright, Copy permitted
- Format Professional oder Consumer
- Category General, Generation not indicated
- 2-Channel, No Emphasis
- Aux Bits Audio use, 24 Bit
- Origin: RME

21.3 MIDI

Das Fireface 802 besitzt einen MIDI I/O über zwei 5-polige DIN Buchsen. Die MIDI-Ports werden im System vom Treiber angemeldet und stehen innerhalb von MIDI-fähiger Software unter dem Namen *Fireface MIDI* zur Verfügung. Bei Einsatz mehrerer Firefaces nummeriert das Betriebssystem die MIDI-Ports automatisch durch, z.B. *Fireface MIDI* (2) etc.

Die MIDI-Ports sind multiclient-fähig. Ein Eingangssignal kann von mehreren Programmen gleichzeitig empfangen werden. Auch der MIDI Ausgang kann von mehreren Programmen gleichzeitig benutzt werden, was jedoch aufgrund der begrenzten Bandbreite von MIDI schnell zu Problemen führen kann.

<u>Hinweis</u>: Die MIDI Eingangs-LED zeigt jegliche MIDI-Aktivität an, also auch MIDI Clock, MTC und Active Sensing. Letzteres wird von fast allen Keyboards alle 0,3 Sekunden gesendet.

22. Word Clock

22.1 Wordclock Ein- und Ausgang

SteadyClock garantiert exzellentes Verhalten in allen Clock-Modi. Aufgrund der effizienten Jitterunterdrückung kann das Fireface 802 FS jegliches Clocksignal säubern, auffrischen, und als Referenz-Clock am BNC-Ausgang bereitstellen (siehe auch Kapitel 38.7).

Eingang

Der Wordclockeingang des Fireface 802 ist aktiv, wenn im Settingsdialog *Clock Source* auf *Word* gestellt wurde, und ein gültiges Wordclocksignal anliegt. Das an der BNC-Buchse anliegende Signal kann Single, Double oder Quad Speed sein, das Fireface stellt sich automatisch darauf ein. Sobald ein gültiges Signal erkannt wird leuchtet die Front-LED WC, und der Settingsdialog zeigt Lock oder Sync (siehe Kapitel 38.1).

Dank RMEs Signal Adaptation Circuit arbeitet der Wordclockeingang selbst mit stark verformten, DC-behafteten, zu kleinen oder mit Überschwingern versehenen Signalen korrekt. Dank automatischer Signalzentrierung reichen prinzipiell schon 300 mV (0.3V) Eingangsspannung. Eine zusätzliche Hysterese verringert die Empfindlichkeit auf 1 V, so dass Über- und Unterschwinger sowie hochfrequente Störanteile keine Fehltriggerung auslösen können.

Der Wordclockeingang ist ab Werk nicht terminiert. Über den Settingsdialog und die Option Word Clock Input Term. wird eine Terminierung mit 75 Ohm aktiviert.

Ausgang

Der Wordclockausgang des Fireface 802 ist ständig aktiv, und stellt grundsätzlich die gerade aktive Samplefrequenz als Wordclock bereit. Im Master-Modus wird die ausgegebene Wordclock demzufolge von der jeweiligen Software festgelegt. Im Modus Slave ist die ausgegebene Frequenz identisch mit der am gerade gewählten Clock-Eingang anliegenden. Fällt das Clock-Signal aus schaltet das Fireface 802 in den Master Modus und stellt die nächst passende Frequenz ein (44.1 kHz, 48 kHz etc.).

Nach Anwahl der Option *Single Speed* im Settingsdialog (Word Clock Out) wird die Ausgangsfrequenz angepasst, so dass sie immer im Bereich 32 bis 48 kHz ist. Bei 96 kHz und 192 kHz Samplefrequenz wird also 48 kHz ausgegeben.

Das dem Gerät zugeführte Wordclocksignal kann auch über den Wordclockausgang weitergeschleift werden. Damit entfällt das sonst notwendige T-Stück, und das Fireface 802 arbeitet wie ein Signal Refresher. Diese Anwendung wird ausdrücklich empfohlen, da

- Ein- und Ausgang phasenstarr sind und 0° Phasenlage aufweisen
- SteadyClock das Eingangsignal praktisch komplett von Jitter befreit
- der außergewöhnliche Eingang des Fireface (1 Vss statt üblichen 3 Vss Empfindlichkeit, DC Sperre, Signal Adaptation Circuit) zusammen mit SteadyClock eine sichere Funktion auch mit kritischsten Wordclocksignalen garantiert

Dank eines niederohmigen, aber kurzschlussfesten Ausganges liefert das Fireface an 75 Ohm 4 Vss. Bei fehlerhaftem Abschluss mit 2 x 75 Ohm (37.5 Ohm) werden immer noch 3.3 Vss ins Netz gespeist.

22.2 Einsatz und Technik

In der analogen Technik kann man beliebige Geräte beliebig miteinander verschalten, eine Synchronisation ist nicht erforderlich. Digital Audio jedoch ist einem Grundtakt, der Samplefrequenz, unterworfen. Das Signal kann nur korrekt weiterverarbeitet oder transportiert werden, wenn alle beteiligten Geräte dem gleichen Takt folgen. Ansonsten kommt es zu Fehlabtastungen des digitalen Signales. Verzerrungen, Knackgeräusche und Aussetzer sind die Folge.

AES/EBU, SPDIF und ADAT sind selbsttaktend, eine zusätzliche Wordclockleitung ist also prinzipiell nicht erforderlich. In der Praxis kommt es bei der gleichzeitigen Benutzung mehrerer Geräte jedoch zu Problemen. Beispielsweise kann die Selbsttaktung bei einer Schleifenverkabelung zusammenbrechen, wenn es innerhalb der Schleife keinen 'Master' (zentralen Taktgeber) gibt. Ausserdem muss die Clock aller Geräte synchron sein, was sich bei reinen Wiedergabegeräten wie einem CD-Player über die Selbsttaktung gar nicht realisieren lässt, da CD-Player keinen SPDIF-Eingang besitzen.

Der Bedarf an Synchronisation in einem Digital Studio wird daher durch das Anschließen an eine zentrale Synchronisationsquelle befriedigt. Beispielsweise arbeitet das Mischpult als Master und liefert an alle anderen Geräte ein Referenzsignal, die Wordclock. Das geht aber nur, wenn die anderen Geräte auch einen Wordclockeingang besitzen, also Slave-fähig sind. (Professionelle CD-Player besitzen daher einen Wordclockeingang). Dann werden alle Geräte synchron mit dem gleichen Takt versorgt und arbeiten problemlos miteinander.

•

Innerhalb eines digitalen Verbundes darf es nur einen Master geben! Befindet sich das Fireface im Modus 'Master' müssen alle anderen Geräte 'Slave' sein.

Doch Wordclock ist nicht nur Allheilmittel, sondern bringt auch einige Nachteile mit sich. Eine Wordclock liefert statt des tatsächlich benötigten Taktes immer nur einen Bruchteil desselben. Beispiel SPDIF: 44.1 kHz Wordclock (ein einfaches Rechtecksignal mit exakt dieser Frequenz) muss innerhalb der Geräte mittels einer PLL um den Faktor 256 multipliziert werden (zu 11.2 MHz). Dieses Signal ersetzt dann das Taktsignal des Quarzoszillators. Großer Nachteil: Wegen der starken Multiplikation ist das Ersatz-Taktsignal stark schwankend, der Jitter erreicht mehrfach höhere Werte als der eines Quarzes.

Das Ende dieser Probleme bietet die **SteadyClock**-Technologie des Fireface 802 FS. Sie verbindet die Vorteile modernster und schnellster digitaler Technologie mit analoger Filtertechnik, und kann daher auch aus einer Wordclock von 44.1 kHz ein sehr jitterarmes Taktsignal von 22 MHz zurückgewinnen. Darüber hinaus wird sogar Jitter auf dem Eingangssignal stark bedämpft, so dass das rückgewonnene Taktsignal in der Praxis immer in höchster Qualität vorliegt.

22.3 Verkabelung und Abschlusswiderstände

Wordclock wird üblicherweise in Form eines Netzwerkes verteilt, also mit BNC-T-Adaptern weitergeleitet und mit BNC-Abschlusswiderständen terminiert. Als Verbindungskabel empfehlen sich fertig konfektionierte BNC-Kabel. Insgesamt handelt es sich um die gleiche Verkabelung wie sie auch bei Netzwerken in der Computertechnik üblich ist. Tatsächlich erhalten Sie entsprechendes Zubehör (T-Stücke, Abschlusswiderstände, Kabel) sowohl im Elektronik- als auch im Computerfachhandel, in letzterem aber üblicherweise in 50 Ohm Technik. Die für Wordclock verwendeten 75 Ohm stammen aus der Videotechnik (RG59).

Das Wordclocksignal entspricht idealerweise einem 5 Volt Rechteck mit der Frequenz der Samplerate, dessen Oberwellen bis weit über 500 kHz reichen. Sowohl die verwendeten Kabel als auch der Abschlusswiderstand am Ende der Verteilungskette sollten 75 Ohm betragen, um Spannungsabfall und Reflektionen zu vermeiden. Eine zu geringe Spannung führt zu einem Ausfall, und Reflektionen können Jitter oder ebenfalls einen Ausfall verursachen.

Leider befinden sich im Markt auch Geräte, die mit einem nur als unbefriedigend zu bezeichnenden Wordclockausgang ausgestattet sind. Wenn der Ausgang bei Abschluss mit 75 Ohm auf 3 Volt zusammenbricht, muss man damit rechnen, dass ein Gerät, dessen Eingang erst ab 2,8 Volt arbeitet, nach 3 Metern Kabel bereits nicht mehr funktioniert. Kein Wunder, dass das Wordclocknetzwerk in manchen Fällen nur ohne Abschlusswiderstand wegen des insgesamt höheren Pegels überhaupt arbeitet. In einigen Geräten sind die Wordclockeingänge fest mit 75 Ohm terminiert. Damit wird oftmals das Netzwerk mit zwei mal 75 Ohm stark belastet, und der Anwender zum Kauf eines speziellen Wordclockverteilers gezwungen (ein solches Gerät ist in größeren Studios allerdings grundsätzlich empfehlenswert).

Es erscheint daher vorteilhaft die Ausgänge Wordclock-liefernder Geräte niederohmig zu gestalten, und alle Wordclockeingänge hochohmig, um das Signal auf der Kette nicht abzuschwächen.

Der Wordclockeingang des Fireface 802 FS kann hochohmig oder intern terminiert sein, und ist damit für maximale Flexibilität ausgelegt. Soll ein vorschriftsmäßiger Abschluss erfolgen, weil er das letzte Glied in einer Kette mehrerer Geräte ist, ist im Settingsdialog die Option *Word Clock In Termination* zu aktivieren (siehe Kapitel 22.1).

Befindet sich das Fireface 802 dagegen innerhalb einer Kette von mit Wordclock versorgten Geräten, so wird das Wordclocksignal mittels T-Stück zugeführt, und an der anderen Seite des T-Stückes zum nächsten Gerät mit einem weiteren BNC-Kabel weitergeführt. Beim letzten Gerät der Kette erfolgt dann die Terminierung in Form eines T-Stücks und eines 75 Ohm Abschlusswiderstandes (kurzer BNC-Stecker). Bei Geräten mit schaltbarem Abschlusswiderstand entfallen T-Stück und Abschlusswiderstand.

Aufgrund der einzigartigen SteadyClock-Technologie des Fireface 802 empfiehlt es sich, das Eingangssignal nicht mittels T-Stück weiterzuschleifen, sondern den Wordclockausgang des Gerätes zu benutzen. Das Eingangssignal wird in diesem Fall dank SteadyClock sowohl von Jitter befreit, als auch im Fehlerfalle gehalten.

22.4 Betrieb

Sobald ein gültiges Wordclocksignal anliegt leuchtet die grüne Lock LED (STATE) auf der Frontplatte auf. Zur Umschaltung der Taktsteuerung auf das Wordclocksignal ist im Feld *Clock Source* des Settingsdialogs *Word* auszuwählen. Die Anzeige *Current* wechselt zu *Word*, sobald ein gültiges Signal an der BNC-Buchse anliegt. Die Anzeige besitzt die gleiche Funktion wie die grüne Status LED, informiert also direkt am Bildschirm, ob ein gültiges Wordclocksignal anliegt und dieses auch benutzt wird.

Bedienungsanleitung

Fireface 802 FS

Stand-Alone Betrieb

23. Funktionen und Betrieb

23.1 Allgemeines

Das Fireface 802 FS enthält sechs interne Speicherplätze zum dauerhaften Ablegen aller Konfigurationsdaten, die über die optionale ARC USB (Advanced Remote Control USB) abrufbar sind. Damit arbeitet das Fireface 802 FS auch ohne Rechner, und verwandelt sich im Stand-Alone Betrieb auf Knopfdruck in verschiedenste, unterschiedlichste Geräte. Darüber hinaus kann Total-Mix, und damit die im Folgenden vorgestellten Anwendungen, auch im Stand-Alone Betrieb per MIDI kontrolliert werden, siehe Kapitel 28.6, *Stand-Alone MIDI Control*.

23.2 Einstellungen am Gerät

Die Bedienung am Gerät entspricht der unter Windows und Mac. Sie beschränkt sich mangels weiterer Bedienelemente auf Gains und Volume. Weitere Funktionen ermöglicht die optionale ARC USB, angeschlossen am Remote-Port auf der Rückseite. Zusätzlich muss sie für die Nutzung im Stand-Alone Betrieb aktiviert werden, was Online in TotalMix FX geschieht (Options, Enable Stand Alone ARC USB).

Im Stand-Alone Betrieb besitzt die ARC USB ein festes Setup mit folgenden Funktionen:

Encoder kontrolliert Main Out Volume

Taste VOL PH1 Encoder kontrolliert Volume des Ausgangs Phones 1*
Taste VOL PH2 Encoder kontrolliert Volume des Ausgangs Phones 2*

Taste DIM DIM für Main Out

Taste DIM länger drücken für Funktion Recall des Main Out

Die folgenden Funktionen erfordern es die Taste 1 Sekunde gedrückt zu halten (Sicherheitsfunktion gegen unabsichtliche Betätigung):

Taste Snap 1-6 lädt die im Gerät gespeicherten Setups 1 bis 6

Taste 7 lädt den 1:1 Routing Modus (All Channel) für den CC-Mode

Taste 8 lädt den Phones Mix Modus für den CC-Mode Taste 9 lädt eine AD/DA Standardkonfiguration**

23.3 Setup vom Computer aus speichern

Setups werden vom Computer aus in das Gerät gespeichert. Dazu wird in TotalMix FX über *Options / Store current state into device* der gewünschte Speicherplatz (Setup) im Gerät ausgewählt, und in das Gerät übertragen. Das Laden der Setups erfolgt Stand-Alone über die optionale ARC USB oder MIDI.

^{*} Die maximale Lautstärke wird von der Stellung des Potis auf der Front vorgegeben.

^{**} Taste 9 resettet auch sämtliche FX, also auch Kanal.EQs etc.

24. Beispiele

24.1 12-Kanal AD/DA Konverter

Mit TotalMix lässt sich schnell ein Routing aller analogen Eingänge auf die ADAT-Ausgänge einstellen, wie auch ein Routing der ADAT-Eingänge zu den analogen Ausgängen. Damit wird das Fireface 802 zu einem hochwertigen 12-Kanal AD/DA-Konverter, der auf Wunsch auf einem der Phones auch ein Monitoring aller DA-Kanäle bereitstellt. Natürlich ist auch ein Monitoring (Mixdown) aller oder bestimmter I/Os über den AES-Out möglich.

Es ist sehr einfach ein solches Setup zu erstellen. Zunächst empfiehlt es sich, über das Options Menü einen *Total Reset* durchzuführen. Dann selektiert man den ADAT Ausgang 1/2 in der dritten Reihe, und stellt die Fader der Analog Inputs 1/2 in der ersten Reihe auf 0 dB. Danach selektiert man ADAT 3/4, schiebt die Fader von Analog 3/4 hoch usw. bis alle 12 analogen Eingänge auf die entsprechenden 12 (8+4) ADAT Ausgänge geroutet sind.

24.2 4-Kanal Mic Preamp

Die vier Mikrofoneingänge können per TotalMix direkt auf die analogen Ausgänge geroutet werden. Damit stellt das Fireface 802 einen 4-Kanal Mic-Preamp dar. Durch die AD- und DA-Wandlung werden die Signale zwar um knapp 0,1 ms verzögert (bei 192 kHz, siehe Kapitel 38.2). Dies ist in der Praxis aber irrelevant, denn der gleiche Effekt ergibt sich durch eine Positionsänderung der Mikrofone um 3,3 Zentimeter.

24.3 Monitor Mixer

TotalMix erlaubt eine beliebige Konfiguration aller I/Os des Fireface. Damit kann das Gerät z.B. als Monitormixer für 12 analoge Signale, 16 digitale per ADAT, und zwei per AES dienen. TotalMix erstellt zudem beliebige Submixes, daher sind auf allen Ausgängen unterschiedliche Monitorings der Eingangssignale möglich. Der perfekte Kopfhörer-Monitor-Mixer!

24.4 Digital Format Konverter

TotalMix erlaubt ein beliebiges Routing der Eingangssignale. Damit kann das Fireface 802 als ADAT zu AES Konverter, ADAT auf zwei ADAT (Splitter) und als AES zu ADAT Konverter genutzt werden.

24.5 Analoge/digitale Routing Matrix

Die Matrix in TotalMix zeigt noch einmal deutlich, dass einfach sämtliche Inputs und Outputs beliebig miteinander verschaltet werden können. Alle obigen Funktionen stehen im Grunde immer gleichzeitig zur Verfügung, lassen sich beliebig kombinieren und mischen. Das Fireface 802 ist eben eine perfekte analoge/digitale Routing Matrix!

Bedienungsanleitung

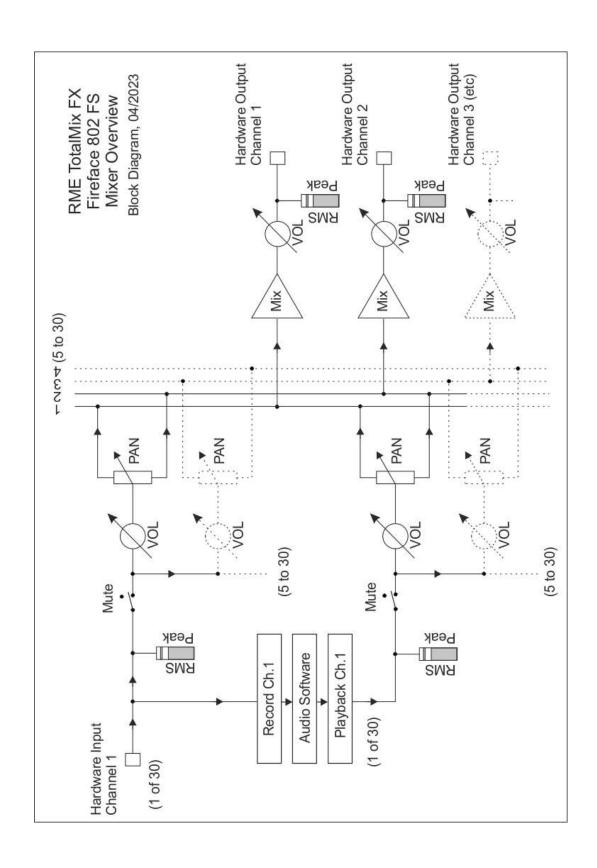
Fireface 802 FS

TotalMix FX

25. Routing und Monitoring

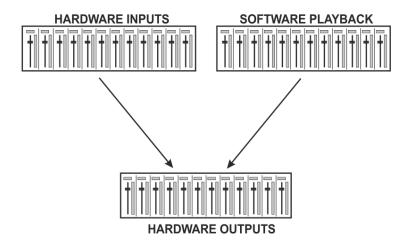
25.1 Überblick

Das Fireface 802 besitzt einen leistungsfähigen digitalen Echtzeit-Mischer, den *Fireface Mixer*. Er basiert auf RMEs einzigartiger, Samplefrequenz-unabhängiger **TotalMix** Technologie. Dank ihr können quasi beliebige Misch- und Routingvorgänge mit allen Eingängen und Wiedergabekanälen auf beliebigen Hardwareausgängen stattfinden. In **TotalMix FX** kommen dazu noch 3-Band parametrischer Equalizer, Low Cut, Echo, Reverb, Compressor, Expander und Auto Level.

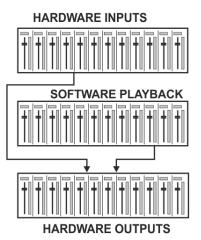

Typische Anwendungsfälle für TotalMix sind:

- Erstellen von verzögerungsfreien Submixen (Kopfhörermischungen). Im Fireface 802 lassen sich bis zu 15 vollkommen unabhänge Stereo-Submixes erstellen. Bei einem analogen Mischpult entspräche dies 30 Aux Sends.
- Beliebiges Routen der Ein- und Ausgänge (freie Verwendbarkeit, Patchbay-Funktion).
- Verteilen eines Signales auf mehrere Ausgänge gleichzeitig. TotalMix bietet State-of-the-Art Splitter- und Verteilfunktionen.
- Gleichzeitige Wiedergabe verschiedener Programme über nur einen Stereoausgang. Dank ASIO Multiclient Treiber können mehrere Programme gleichzeitig genutzt werden. Geschieht dies auf verschiedenen Wiedergabekanälen erlaubt es TotalMix, diese auf beispielsweise nur einem Stereoausgang zusammenzumischen und abzuhören.
- Mischen des Eingangssignales zum Playbacksignal (vollständiges ASIO Direct Monitoring).
 RME ist nicht nur der Pionier in Sachen ADM, sondern bietet auch die vollständigste Umsetzung der ADM-Funktionen.
- Integration externer Geräte. TotalMix erlaubt ein Einschleifen externer Effektgeräte, im Wiedergabe- und im Aufnahmeweg. Je nach Anwendung entspricht dies einer Insert oder Effekt-Send und Effekt-Return Funktionalität, um beispielsweise beim Echtzeitmonitoring dem Gesang etwas Hall hinzuzufügen.

Jeder Eingangskanal, Wiedergabekanal und Hardwareausgang besitzt ein in Hardware berechnetes Peak und RMS Level Meter. Diese Pegelanzeigen sind besonders hilfreich, da sie auf einen Blick erkennen lassen, wo derzeit Signale vorhanden sind, und wohin sie geroutet werden.


Zum Verständnis des TotalMix-Mischers sind folgende Dinge wichtig zu wissen:

- Wie das Blockschaltbild (nächste Seite) zeigt, bleibt das Record-Signal normalerweise unbeeinflusst. TotalMix befindet sich also nicht im Aufnahmeweg, und verändert weder den digitalen Eingangspegel noch die aufzunehmenden Audiodaten (Ausnahmen: EQ+D for Record und
 Loopback Modus).
- Das Hardware-Eingangssignal kann beliebig oft mit unterschiedlichen Pegeln weitergeleitet werden. Dies ist ein großer Unterschied zur Bus- und Mix-Struktur herkömmlicher Mischpulte, bei denen der Kanalfader immer den Pegel für alle Routingziele gleichzeitig verändert.
- Die Levelmeter von Eingängen und Playback-Kanälen sind Pre-Fader angeordnet, um erkennen zu können, wo ein Signal anliegt. Die Level Meter der Hardwareausgabe sind dagegen Post-Fader angeordnet, um erkennen zu können, mit welchem tatsächlichen Pegel ein Signal ausgegeben wird.


25.2 Die Oberfläche

Das optische Design von TotalMix resultiert aus der Fähigkeit, Hardwareeingänge und Software-Playbackkanäle auf beliebige Hardwareausgänge routen zu können. Das Fireface 802 hat 30 Kanäle Eingänge, 30 Kanäle Software-Playback, und 30 Kanäle Hardwareausgänge:

TotalMix kann in der obigen Ansicht (View Options **2 Rows)** platzsparend arbeiten. Default ist jedoch eine vertikale Anordnung wie bei einer Inline-Konsole, wobei die Reihe *Software Playback* dem *Tape Return* eines realen Mischpultes entspricht:

- Obere Reihe: Eingänge der Hardware. Der angezeigte Pegel ist der des Eingangssignals, also Fader-unabhängig. Mittels Fader und Routingfenster kann jeder Eingangskanal beliebig auf jeden Hardwareausgang (dritte Reihe) geroutet und gemischt werden.
- Mittlere Reihe: Playback-Kanäle (Wiedergabespuren der Audio-Software). Mittels Fader und Routingfenster kann jeder Playbackkanal beliebig auf jeden Hardwareausgang (dritte Reihe) geroutet und gemischt werden.
- Untere Reihe: Hardwareausgänge. Hier kann der Pegel des ausgegebenen Signals verändert werden. Dies kann die Lautstärke angeschlossener Lautsprecher sein, aber der Ausgangspegel der Submixe.

Bedienung im Modus Submix View (Default)

Klickt man mit der Maus auf den Hardwareausgang an dem ein Signal erscheinen soll wird dieser heller dargestellt, er ist als aktueller Submix selektiert. Nun die Fader aller Quellen – Eingänge wie Playback-Kanäle in erster und zweiter Reihe – hochziehen, die an diesem Submix-Ausgang erscheinen sollen. Die Audiosignale von Eingängen (Monitoring) als auch Wiedergabe (DAW Software) erscheinen nun an genau diesem Ausgang, was dank der Level Meter auch jederzeit verifizierbar ist.

Die folgenden Kapitel erläutern Schritt für Schritt alle Funktionen der Oberfläche.

25.3 Die Kanäle

Ein Kanalzug kann einen Mono- oder Stereokanal enthalten. Die Darstellung wird in den Kanal-Settings umgeschaltet.

Kanalname. Das Namensfeld ist die bevorzugte Stelle, um einen Kanal per Mausklick zu selektieren. Per Doppelklick öffnet sich ein Dialog zur Eingabe eines alternativen Namens. Der originale Name erscheint bei Aktivierung der Option O-Names in den View Options.

Panorama. Routet das Eingangssignal beliebig auf das linke und rechte Routingziel (unteres Label, siehe unten). Die Absenkung in Mittenstellung beträgt -3 dB.

Mute und Solo. Eingänge und Playbackkanäle sind jeweils mit einem Mute und Solo-Taster ausgestattet.

Numerische Pegelanzeige. Zeigt den aktuellen Pegel in RMS oder Peak. OVR bedeutet Overload (Übersteuerung). Die Umschaltung der Anzeige von Peak oder RMS erfolgt in den View Options.

Levelmeter. Das Meter zeigt sowohl Peak (Zero Attack, 1 Sample reicht zur Anzeige der Vollaussteuerung) in Form eines Striches, als auch mathematisch korrekten RMS als Balken. Die Anzeige RMS ist mit einer relativ langsamen Zeitkonstante versehen, so dass sie recht gut die durchschnittliche Lautstärke darstellt. Over erscheinen rot am oberen Ende des Meters. Über F2 (Preferences) ist sowohl die Peak Hold Time, die Over-Erkennung als auch der RMS-Bezugswert einstellbar.

Fader. Bestimmt den Pegel des gerouteten Signals zum aktuellen Routingziel (unteres Label). Bitte beachten Sie, dass dieser Fader nicht der Fader des jeweiligen Kanals ist, sondern immer nur der Fader des aktuellen Routings. Verglichen mit einem herkömmlichen Mischpult besitzt TotalMix keinen Kanalfader, sondern nur Aux-Sends, und zwar so viele wie es Hardwareausgänge gibt. Dadurch kann TotalMix auch so viele unterschiedliche Submixes erstellen wie es Hardwareausgänge gibt. Dieses Konzept wird besonders in der Submix View deutlich, doch dazu später mehr.

Unterhalb des Faders wird der **Gain** entsprechend der Faderstellung eingeblendet. Der Fader lässt sich:

- per Maus mit gedrückter linker Maustaste ziehen
- > mit dem Mausrad verschieben
- per Doppelklick auf 0 dB und -∞ setzen. Gleiches passiert mit einfachem Klick bei gedrückter Strg-Taste.
- bei gedrückter Umschalt-Taste im Fein-Modus mit der Maus und dem Mausrad verstellen

Ein Klick auf den Fader mit gedrückter Umschalt-Taste fügt ihn der **temporären Fadergruppe** hinzu. Alle nunmehr gelben Fader sind gekoppelt, und bewegen sich relativ zueinander gemeinsam. Die temporäre Fadergruppe wird durch Klick auf das F-Symbol rechts oben im Fenster gelöscht.

Mit dem **Pfeilsymbol** lässt sich ein Kanal horizontal verkleinern, so dass nur noch die Level Meter zu sehen sind. Ein Mausklick bei gedrückter Strg-Taste führt zum Ein- und Ausklappen aller weiter rechts befindlichen Kanäle.

0

Das unterste Feld zeigt das aktuelle **Routingziel**. Per Mausklick öffnet sich das Routingfenster zur Auswahl eines Routingziels. Alle derzeit für diesen Kanal aktiven Routings sind mit vorangestellten Pfeilen markiert, der aktuelle erscheint in fetter Schrift.

Ein Pfeil erscheint erst mit aktivem Routing. Ein Routing gilt erst dann als aktiv wenn auch Audiodaten gesendet werden. Solange der Fader auf −∞ steht, ist das aktuelle Routing zwar in fetter Schrift zu sehen, aber noch ohne vorangestellten Pfeil.

Trim Gain. Nach Klick auf den **T**-Knopf sind alle Fader des Kanals synchronisiert. Statt nur ein einzelnes Routing zu verändern wirkt der Fader auf alle aktiven Routings des Kanals. Für eine bessere Übersicht werden die derzeit nicht sichtbaren Fader als orangene Dreiecke links neben der Faderbahn angezeigt. Beim Bewegen des Faders bewegen sich die Dreiecke mit, entsprechend der veränderten Stellung der Fader.

Der Faderknopf wird auf den aktuell höchsten Gainwert aller Routings gesetzt, um eine bestmögliche Einstellbarkeit zu gewährleisten. Dies ist jedoch nicht unbedingt das aktuelle Routing. Der Gain (die Position des Faderknopfes) des aktuell aktiven Routings (also des in der dritten Reihe ausgewählten Submixes) wird als weißes Dreieck angezeigt.

<u>Hintergrund</u>: TotalMix hat keinen festen Kanalfader, sondern besteht beim Fireface 802 aus 15 Stereo Aux Sends, die jeweils als einziger Fader abwechselnd im Kanalzug dargestellt werden. Durch die vielen Aux Send sind mehrere, dabei vollkommen unabhängige Routings möglich.

In manchen Fällen ist es jedoch notwendig, die Gain-Verstellung dieser Routings zu synchronisieren. Ein Beispiel ist die Post-Fader Funktionalität, bei der eine Änderung der Lautstärke des Sängers parallel mit der Änderung des zum Hallgerät geführten Signals erfolgen soll, damit sich der Hallanteil relativ nicht ändert. Ein anderes Beispiel ist das auf mehrere Submixe, also Ausgänge, geroutete Signal einer Gitarre, die im Solo plötzlich viel zu laut wird, und deshalb auf allen Ausgängen gleichzeitig in der Lautstärke reduziert werden soll. Nach Klick auf den Trim-Knopf ist dies einfach und übersichtlich möglich.

Da sich bei aktiviertem Trim-Knopf die Gains aller Routings eines Kanals gleichzeitig ändern, bewirkt dieser Modus im Grunde das gleiche wie ein Trim-Poti im Eingangskanal, der das Signal schon vor dem Mischpult reduziert oder verstärkt. Daher die Namensgebung dieser Funktion.

In den View Options / Show lässt sich Trim Gains global für alle Kanäle ein- und ausschalten. Der globale Trim-Modus ist beispielweise bei einem Einsatz als Live-Mischpult empfehlenswert.

Das Kontext Menü. Mit einem Rechtsklick auf Eingangs-, Wiedergabe- und Ausgangskanal öffnet sich das Kontext Menü mit erweiterten Funktionen (diese Menüs sind auch in der Matrix vorhanden, aber dort nur direkt auf den Kanalbezeichnern aufrufbar). Die Einträge sind selbsterklärend und abhängig von der Kanalart. Auf allen öffnet der erste Eintrag den Dialog Channel Layout. Der Eingangskanal bietet Clear, Copy input, Paste the input mix und Paste FX. Auf einem Wiedergabekanal erscheinen Copy, Paste und Clear the playback mix. Ein Ausgangskanal zeigt Copy- und Mirror-Funktion für den aktuellen Submix, sowie ein Copy der FX- Einstellungen.

25.3.1 Settings

Ein Klick auf das Schraubenschlüsselsymbol öffnet die **Settings**. Darin befinden sich je nach Kanal unterschiedliche Elemente. So existiert die Option Inst nur im Eingangskanal 9-12, und die ADAT-Kanäle bieten keine Option zur Einschaltung der Phantomspeisung.

Stereo. Schaltet den Kanal in den Mono- oder Stereo-Modus.

48V. Aktiviert Phantomspeisung am jeweiligen Eingang. Dient zur Speisung hochwertiger Kondensatormikrofone. Diese Option sollte mit anderen Quellen deaktiviert bleiben, um Ausfälle durch Spannungsspitzen zu vermeiden.

Inst. Schaltet Eingang 9 bis 12 jeweils von XLR auf die Klinkenbuchse (TS) um.

Gain. Zusätzliche Verstärkung 0 bis +12 dB für die acht rückwärtigen Eingänge AN 1 bis 8. Der Drehknopf kann durch Ziehen mit gedrückter Maustaste oder per Mausrad verstellt werden. Dies funktioniert auch bei Positionierung der Maus auf den beiden Gainanzeigen. Dabei ist der Gain im Stereo-Kanal einzeln für Links oder Rechts veränderbar.

Level. Individuelle Einstellung des Referenzpegels der 8 rückseitigen Line-Eingänge. Zur Auswahl stehen +4 dBu und LoGain.

Width. Einstellung der Stereo-Basisbreite. 1.00 entspricht vollem Stereo, 0.00 Mono, -1.00 vertauschten Kanälen.

FX Send. Bestimmt den Pegel des zum FX-Bus gesendeten Signals, der Echo und Hall zugeführt wird. Die Einstellung ist auch bei geschlossenen Settings sichtbar, da Drehknopf und kleiner Fader immer synchron bleiben. Um diese Funktion möglichst praxisgerecht arbeiten zu lassen, ist FX Send an den höchsten aktuellen Submix gekoppelt, und imitiert damit die *Aux Post Fader* Funktionalität eines herkömmlichen Mischpultes. Beim Verschieben des großen Faders bewegen sich also kleiner Fader und Drehknopf mit. Auf diese Weise bleibt der Hallanteil im Monitoring immer in der gleichen Relation zum trockenen Signal.

Der Pegel des zu den Effekten gesendeten Signals lässt sich auf den Level Metern *FX In* des FX-Fensters kontrollieren. Dieses erscheint nach Klick auf FX in den View Options.

MS Proc. Aktiviert M/S-Processing im Stereo-Kanal. Monoanteile erscheinen auf dem linken Kanal, Stereoanteile auf dem rechten.

Phase L. Invertiert die Phase des linken Kanals um 180°.

Phase R. Invertiert die Phase des rechten Kanals um 180°.

<u>Hinweis</u>: die Funktionen Width, MS Proc, Phase L und Phase R wirken auf alle Routings des jeweiligen Kanals.

Die Settings der Hardwareausgänge weisen neben Stereo/Mono, Phase L und Phase R noch weitere Optionen auf:

Level. Einstellung des Referenzpegels der 8 analogen Line-Ausgänge. Zur Auswahl stehen -10 dBV, +4 dBu und HiGain.

FX Return. Das Effektsignal (Echo und Hall) wird über das Tandem kleiner Fader/Drehknopf dem jeweiligen Hardwareausgang zugemischt.

Talkback. Aktiviert den jeweiligen Kanal als Empfänger, und damit Ausgang des Talkback-Signals. Damit kann Talkback nicht nur über die Phones in der Control Room Sektion, sondern jeglichen Ausgang erfolgen. Eine weitere Anwendung könnte das Ausspielen eines bestimmten Signals an bestimmte Ausgänge auf Knopfdruck sein.

No Trim. In manchen Fällen haben Kanäle ein festen Routing und feste Pegel, die sich nicht ändern sollten. Ein Beispiel wäre der Stereo-Mixdown für die Aufnahme einer Live-Show. Mit *No Trim* aktiv ist das Routing des Ausgangskanals von der Funktion Trim Gains ausgenommen, und wird daher nicht unabsichtlich verstellt.

Loopback. Sendet die Ausgangsdaten an den Treiber als Aufnahmedaten. Der entsprechende Submix kann dadurch aufgenommen werden. Der Hardwareeingang dieses Kanals sendet seine Daten nur noch an TotalMix, nicht mehr zur Aufnahmesoftware.

Ein weiterer Unterschied zu den Eingangs- und Playback-Kanälen ist der Taster **Cue** statt Solo. Ein Klick auf Cue schaltet den entsprechenden Hardware Output auf den **Main** Out, oder einen der Phones Outs (Option *Assign / Cue to* in der Control Room Sektion). Damit lässt sich jeder Hardwareausgang beguem über den Monitorausgang kontrollieren und abhören.

27.3.2 Equalizer

Ein Klick auf EQ öffnet den **Equalizer**. Er ist in allen Eingangs- und Ausgangskanälen verfügbar, und wirkt auf alle Routings des jeweiligen Kanals (Pre-Fader). Das Fenster beinhaltet einen einzeln schaltbaren und konfigurierbaren Low Cut, und einen 3-fach parametrischen Equalizer.

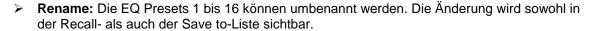
EQ. Wird über den Button EQ aktiviert.

Type. Band 1 und 3 können im Modus Peak (Glocke) oder Shelf (Kuhschwanz) betrieben werden. Das mittlere Band steht fest auf Peak. Band 3 kann auch als *Hi Cut* (Low Pass Filter) arbeiten - besonders nützlich für LFE und Subwoofer.

Gain. All drei Bänder können ihre Verstärkung von +20 dB bis -20 dB ändern.

Freq. Die Grundfrequenz der Filter ist einstellbar von 20 Hz bis 20 kHz. Im Modus Peak handelt es sich um die Mittenfrequenz des Filters, im Modus Shelf um die Grenzfrequenz (-3 dB).

Q. Die Güte der Filter ist von 0.7 (breiter Bereich) bis 5.0 (sehr schmalbandig) einstellbar.

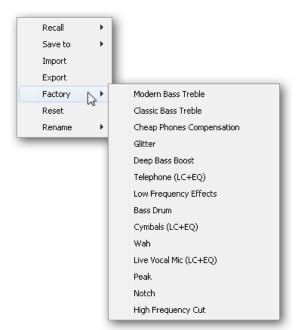

Lo Cut. Wird über den Button Lo Cut aktiviert. Die Flankensteilheit des Hochpasses ist einstellbar zwischen 6, 12, 18 und 24 dB pro Oktave. Die Grenzfrequenz (-3 dB) ist einstellbar zwischen 20 Hz und 500 Hz.

Die Frequenzganggrafik zeigt übersichtlich und präzise die Auswirkungen der Filter. Wenn sich Filter überlappen beeinflussen sie sich gegenseitig. Dies lässt sich ausnutzen um mehr als 20 dB Beeinflussung zu erreichen, oder schwierige Frequenzgangkorrekturen zu erzeugen.

<u>Hinweis</u>: TotalMix besitzt einen internen Headroom von 24 dB. Extreme Anhebungen mit mehrfacher Überlappung können daher zu einer internen Übersteuerung führen. Diese wird aber in jedem Fall über die Over-LED des Level Meters angezeigt.

Preset. Einstellungen des Equalizers und des Low Cut können jederzeit gespeichert, geladen, und zwischen Kanälen kopiert werden. Ein Kick auf Preset öffnet ein Menü mit mehreren Unterpunkten:

- Recall: Zuvor vom User gespeicherte Presets lassen sich hier auswählen und laden
- Save to: Es stehen 16 Speicherplätze zur Verfügung (EQ Preset 1 bis 16)
- Import: L\u00e4dt eine zuvor gespeicherte TM EQ Datei (.tmeq)
- Export: Speichert den aktuellen Zustand als TM EQ Datei (.tmeq)
- Factory: Enthält 14 Beispiele für den kreativen Umgang mit Low Cut und Equalizer
- Reset: Reset des Low Cut und EQ auf minimale Beeinflussung (Gain 0 dB)



Kopieren zwischen Kanälen: Das EQ-Preset Menü aller Kanäle ist identisch. Wird ein EQ per Save to auf einem der 16 Speicherplätze gespeichert, steht er damit auch in allen anderen Kanälen per Recall zur Verfügung.

Kopieren zwischen Snapshots: Die Presets werden nicht in Snapshots gespeichert, und ändern sich damit auch nicht wenn ein anderer Snapshot geladen wird. Presets werden in Workspaces gespeichert und mit diesen geladen.

Kopieren zwischen Workspaces: erfolgt über die Export- und Import-Funktion des Preset Menüs. Wichtige und nützliche Presets sollten immer auch als TM EQ Datei gesichert werden, so dass diese auch bei einem versehentlichen Überschreiben weiter zur Verfügung stehen.

Factory Presets: Laden wie alle Presets immer die Einstellung von Low Cut und EQ gleichzeitig. Der aktuelle Zustand, also On/Off, wird jedoch nicht gespeichert oder aktiviert. Damit kann ein Preset jederzeit geladen werden, wird aber erst dann aktiv, wenn der Anwender den EQ und/oder LC bewusst einschaltet – außer beides war schon vor dem Laden eingeschaltet. Aus diesem Grund haben einige Factory Presets besondere Bezeichnungen. Telephone (LC+EQ) beispielsweise klingt erst richtig gut, wenn der LC zusätzlich zum EQ eingeschaltet wird, da der LC hier auf ungewöhnlich hohe 500 Hz Grenzfrequenz eingestellt ist.

25.3.3 Dynamics

Ein Klick auf D öffnet die **Dynamics** mit Compressor, Expander und Auto Level. Sie sind in allen Eingangs- und Ausgangskanälen verfügbar, und wirken auf alle Routings des jeweiligen Kanals.

Dynamics. Wird über den Button aktiviert.

Thresh. Einsatzpunkt (Threshold) des Compressors oder Expanders. Der Compressor ist von -60 dB bis 0 dB einstellbar, der Expander von -99 dB bis -20 dB.

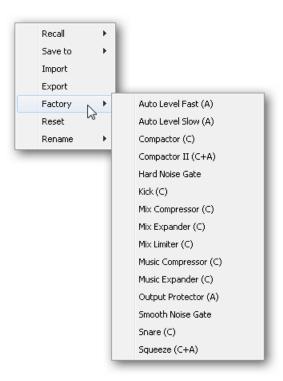
Ratio. Verhältnis des Eingangs- zum Ausgangssignal. Legt die Stärke der Bearbeitung des Signals fest. Einstellbar von 1 bis 10.

Gain. Verstärkungsstufe zum Ausgleich des Pegelverlustes bei aktivem Compressor. Einstellbar von -30 bis +30 dB. Kann bei deaktiviertem Compressor (Threshold 0 dB, Gain 1:1) auch als universelle digitale Verstärkungsstufe verwendet werden.

Attack. Anstiegszeit der Regelspannung für Compressor und Expander. Legt die Reaktionsgeschwindigkeit auf ansteigenden Pegel fest. Einstellbar von 0 ms bis 200 ms.

Release. Abfallzeit der Regelspannung für Compressor und Expander. Legt die Reaktionsgeschwindigkeit auf abfallenden Pegel fest. Einstellbar von 100 ms bis 999 ms.

Die Amplitudengrafik zeigt übersichtlich und präzise die Auswirkungen der Einstellungen für Compressor und Expander. Der weiße Punkt zeigt den Pegel des Eingangssignals, und damit ob dieses von den aktuellen Einstellungen beeinflusst wird oder nicht. Die hellblauen Linien im Level Meter zeigen die aktuell wirksame Gain Reduction an. Einstellungen zu diesen *Dynamic Meters* finden sich in den Preferences (F2).


Auto Level. Wird über den Button aktiviert.

Max. Gain. Legt die maximale Verstärkung des Eingangssignals fest. Einstellbar von 0 dB bis 18 dB.

Headroom. Um kurzzeitige Übersteuerung und das Abschneiden der Pegelspitzen zu minimieren kann Auto Level mit einem festen Abstand zu 0 dBFS arbeiten. Einstellbar von 3 dB bis 12 dB.

Rise Time. Legt die Geschwindigkeit des Pegelanstiegs nach einer Pegelreduzierung fest. Einstellbar von 0.1 s bis 9.9 s.

Preset. Enthält die gleichen Funktionen wie auf der vorherigen Seite beim Equalizer beschrieben. Bei den Factory Presets ist im Namen ersichtlich, ob nur Compressor, nur Auto Level oder beides (C+A) einzuschalten ist.

25.4 Sektion Control Room

In der Sektion Control Room wird über das Menü *Assign* der **Main Out** definiert, über den im Studio abgehört wird. Für diesen Ausgang gelten dann automatisch die Funktionen Dim, Recall, Mono, Talkback, External In und Mute FX.

Zusätzlich wird der Kanal von den Hardware Outputs in die Sektion Control Room verschoben, und mit dem Label *Main* versehen. Gleiches passiert bei Auswahl eines Main Out B oder der Phones. Der ursprüngliche Name ist über die Funktion Names in den View Options jederzeit sichtbar.

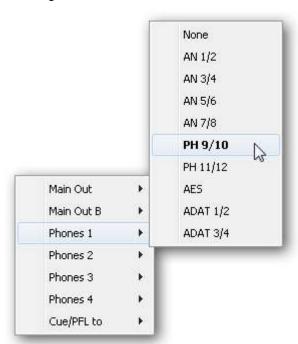
Wenn Talkback aktiviert wurde erhalten Phones 1 bis 4 ein spezielles Routing, und das in den Settings definierte Dim wird aktiv. Auch macht die Platzierung dieser Ausgänge neben dem Main Out die Ausgangssektion übersichtlicher.

Dim. Die Lautstärke wird um den im Settingsdialog (F3) eingestellten Wert reduziert.

Recall. Setzt den im Settingsdialog definierten Gain-Wert.

Speaker B. Schaltet die Wiedergabe von Main Out auf den Main Out B um. Per Link lassen sich die Fader der Kanäle Main und Speaker B koppeln.

Mono. Mischt linken und rechten Kanal. Dient zur Prüfung der Mono-Kompatibilität.


Talkback. Ein Klick auf diesen Knopf verringert die Lautstärke aller Signale auf den *Phones* um den im Preferences-Dialog eingestellten Wert. Gleichzeitig wird das Mikrofonsignal des Mikrofons im Regieraum (Kanal in Preferences definiert) zu den *Phones* gesendet. Der Pegel des Mikrofonsignals wird mit dem Fader des jeweiligen Kanals eingestellt.

External Input. Schaltet das Main Monitoring vom Mix-Bus auf den in den Settings (F3) definierten Stereo-Eingang. Die relative Lautstärke wird dort über den Gain-Schieberegler eingestellt.

Mute FX. Mutet Hall und Echo auf dem Main Out, um den Mix ohne diese Effekte abzuhören.

Assign. Erlaubt die Definition des Main Out, Main Out B (Speaker B), und von bis zu vier Kopfhörerausgängen.

Als Ausgang zum Abhören des Cue-Signals, normalerweise Main, stehen auch die Phones 1-4 zur Verfügung. Die Einstellung *Cue/PFL to* kontrolliert auch das PFL-Monitoring.

Main

0

Recall

Mono

Mute FX

0

M CUE

25.5 Der Control Strip

Der Control Strip auf der rechten Seite ist ein festes Element. Er vereint verschiedene Funktionen, die entweder global notwendig sind, oder ständig gebraucht werden, und daher nicht in einem Menü versteckt sein sollten. Er lässt sich dennoch über das Menü, *Window - Hide Control Strip*, ausblenden.

Die in den folgenden Kapiteln beschriebenen Felder lassen sich durch Klick auf das Dreieck in ihrer Titelleiste einklappen.

Deviceauswahl. Sind mehrere unterstütze Geräte im Computer aktiv kann hier zwischen diesen gewechselt werden.

FX - DSP Meter. Zeigt die Auslastung des DSP durch aktivierte EQ, Low Cut, Compressor, Auto Level, Echo und Reverb. Der DSP des Fireface 802 besitzt eine automatische Begrenzung. Steht keine Leistung mehr zur Verfügung können keine weiteren FX aktiviert werden. Bei der Umschaltung in den DS oder QS Mode werden FX automatisch deaktiviert, bis die maximale DSP-Leistung nicht mehr überschritten ist.

Undo / Redo. Mit dem unbegrenzten Undo und Redo lassen sich Veränderungen am Mix beliebig widerrufen und erneut ausführen. Undo/Redo erfasst jedoch keine Veränderungen an der Oberfläche (Fenstergröße, Position, Kanäle schmal/breit etc.), und auch keine Änderungen an den Presets. Das versehentliche Überschreiben eines EQ-Presets kann also nicht widerrufen werden.

Fireface 802
FX

%

M S E

View Options
ROUTING MODE

SUBMIX FREE

LEVEL METERS

POST FX RMS

SHOW

FX TRIM

2ROW NAMES

Undo/Redo arbeitet auch über Workspaces hinweg. Daher lässt sich eine vollkommen anders gestaltete Mixer-Ansicht per Workspace laden, und mit einem einmaligen Klick auf Undo der vorherige interne Mischerzustand zurückholen – die neue Mixer-Ansicht aber bleibt erhalten.

Global Mute Solo Fader.

Mute. Global Mute arbeitet quasi Pre-Fader, schaltet also alle derzeit aktivierten Routings des Kanals stumm. Sobald irgendein Mute-Taster gedrückt wird leuchtet im Control Strip der *Mute Master* Button auf. Mit ihm lassen sich alle aktivierten Mutes aus-, aber auch einschalten, also mehrere Mutes gemeinsam aktivieren/deaktivieren.

Solo. Sobald ein Solo-Taster gedrückt wurde leuchtet im Schnellbedienfeld der *Solo Master* Button auf. Mit ihm lassen sich alle aktivierten Solos aus- und einschalten. Solo arbeitet wie von Mischpulten gewohnt als Solo-in-Place, quasi Post-Fader. Die für Mischpulte typische Einschränkung, dass Solo nur global oder nur auf dem Main Out arbeitet, gibt es in TotalMix nicht. Solo wird immer für den gerade aktiven Submix aktiviert.

Fader. Der Klick auf einen Fader mit gedrückter Umschalt-Taste fügt ihn der **temporären Fadergruppe** hinzu. Alle nunmehr gelben Fader sind gekoppelt, und bewegen sich relativ zueinander gemeinsam. Die temporäre Fadergruppe wird durch Klick auf das F-Symbol gelöscht.

25.5.1 View Options

Das Feld **Show** fasst verschiedene Funktionen zu Routing, den Level Metern und der Mixerdarstellung zusammen.

Routing Mode

- Submix. Die Submix View (Default) ist die bevorzugte Ansicht und bietet schnellsten Überblick, Bedienung und Verständnis von TotalMix. Der Klick auf einen Kanalzug im Hardware Output selektiert den entsprechenden Submix, alle anderen Ausgänge erscheinen abgedunkelt. Gleichzeitig sind alle Routingfelder aller Kanäle auf diesen Kanal umgestellt. Mit Submix View ist es sehr einfach, für beliebige Ausgänge einen Submix zu erzeugen: Ausgangskanal wählen, Fader und Pans in der ersten und zweiten Reihe wie gewünscht einstellen fertig.
- ➤ Free. Die Free View ist für fortgeschrittene Anwender. Sie dient der gleichzeitigen Editierung mehrer Submixe, ohne zwischen diesen wechseln zu müssen. Hierbei wird nur mit dem Routingfeld der Input- und Playback-Kanäle gearbeitet, die dann unterschiedliche Routingziele anzeigen.

Level Meters

- ▶ Post FX. Schaltet alle Level Meter vor oder hinter die Effekte. Pegelveränderungen durch diese sind damit leicht kontrollierbar. Ausserdem lässt sich das Eingangssignal auf Übersteuerungen überprüfen. Es empfiehlt sich Post FX als Standardeinstellung zu benutzen, denn das extreme Absenken eines Signals durch LC/EQ sind eher selten. Zudem sind die Over-Anzeigen aller Level Meter sowohl Pre- als auch Post, was unbemerkte Übersteuerungen effektiv verhindert.
- **RMS.** Die numerische Pegelanzeige in den Kanälen gibt wahlweise Peak oder RMS aus.

Show

- > FX. Öffnet das Fenster zur Einstellung der Effekte Hall und Echo.
- ➤ **Trim.** Aktiviert die Trim-Buttons aller Kanäle gleichzeitig. Dadurch verhält sich TotalMix fast wie ein konventionelles, einfaches Mischpult. Jeder Fader wirkt auf alle aktiven Routings des Kanals gleichzeitig, so als wäre der Fader ein Trim-Poti im Hardwareeingang.
- ➤ 2 Row. Schaltet die Mixeransicht auf 2 Reihen um. Hardware Inputs und Software Playbacks sind dann nebeneinander. Diese Ansicht spart viel Platz, besonders in der Höhe. Über Settings lassen sich die Playbacks in die untere Reihe verschieben (2-Row Mode with only Input in first row), so dass die ganze Breite für die Eingänge zur Verfügung steht.
- Names. Anzeige der originalen Namen der Kanäle falls diese vom Anwender geändert wurden.

25.5.2 Snapshots - Groups

Snapshots beinhalten alle Mixereinstellungen, aber keine grafischen Elemente wie Fensterposition oder Größe, Anzahl geöffneter Fenster, sichtbare EQs oder Settings, Scrollzustände, Presets etc. Lediglich der Zustand breit/schmal der Kanäle wird mit erfasst. Der Snapshot wird zudem nur temporär gespeichert. Das Laden eines Workspace führt zum Verlust aller aktuellen Snapshots, wenn diese nicht zuvor über ein Workspace gemeinsam, oder über File / Save Snapshot as einzeln gespeichert wurden. Über File / Load Snapshot lassen sich Mixerzustände auch einzeln laden, und per File / Preload all Snapshots auch aus einem Workspace heraus vorladen, ohne aktiv zu werden.

Im Feld Snapshot lassen sich bis zu acht verschiedene Mixe unter verschiedenen Namen ablegen. Per Klick auf einen der acht Knöpfe wird der jeweilige Snapshot geladen. Ein Doppelklick auf das Namensfeld öffnet die Dialogbox *Input Name* zur Eingabe eines neuen Namens. Sobald sich der Mixzustand ändert blinkt der Knopf. Nach Klick auf Store blinken alle acht Knöpfe, wobei der letztmalig geladene, also die Grundlage des veränderten Zustandes, invertiert blinkt. Die Speicherung erfolgt durch Klick auf den gewünschten Knopf und damit Speicherplatz. Das Speichern kann durch nochmaligen Klick auf das blinkende Store abgebrochen werden.

Das Feld Snapshots ist durch Klick auf den Pfeil in der Titelleiste einklappbar.

Das Feld **Groups** stellt je 4 Speicherplätze für Fader-, Mute- und Solo-Gruppen zur Verfügung. Die Gruppen gelten pro Workspace, sind also in allen acht Snapshots aktiv und verfügbar. Damit sind sie aber auch nach dem Laden eines neuen Workspace verloren, wenn sie nicht zuvor in einem solchen gespeichert wurden.

Snapshots

Mix 1

Mix 2

Mix 3

Mix 4

Mix 5

Mix 6

Mix 7

Mix 8

Store

Groups

Mute Solo Fader

1 1 1

2 2 2

3 3 3 3

4 4 4 4

Edit Clear

Hinweis: Die Undo-Funktion hilft bei versehentlichem Überschreiben oder Löschen der Groups.

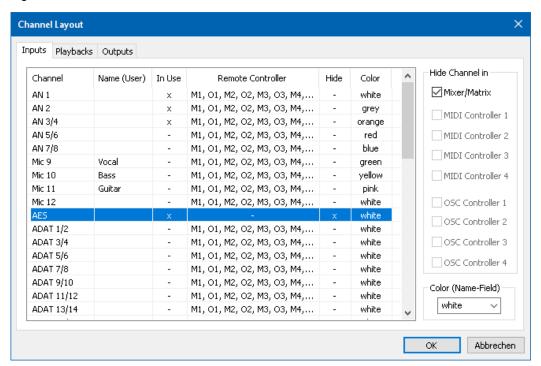
TotalMix führt mittels Blinksignalen durch die Benutzung der Gruppenfunktion. Nach dem Klick auf Edit und Klick auf den gewünschten Speicherplatz werden alle für diese Gruppe gewünschten Funktionen aktiviert bzw. selektiert. Der Speichervorgang wird mit einem weiteren Klick auf Edit beendet.

Bei der Erstellung einer Fadergruppe sollten keine Fader aufgenommen werden die auf oberem oder unterem Anschlag stehen, außer alle Fader der Gruppe sind so eingestellt.

Die Mute-Gruppen arbeiten - anders als der globale Mute - nur für das aktuelle Routing. Damit kann es nicht passieren dass Signale ungewollt an allen Ausgängen gemutet werden. Stattdessen lassen sich Signale gezielt auf bestimmten Submixes per Knopfdruck ausblenden.

Eine Solo-Gruppe arbeitet genau wie das globale Solo, Signale außerhalb des aktuellen Routings werden nicht beeinflusst.

25.5.3 Channel Layout - Layout Presets


Um die Übersicht über die Kanäle in TotalMix FX nicht zu verlieren lassen sich diese verstecken. Kanäle können auch von der Funktion Remote Control ausgeschlossen werden. Unter *Options / Channel Layout* listet ein Dialogfenster den aktuellen Status aller I/Os. Nach Selektion von einem oder mehreren Kanälen stehen die Optionen rechts zur Verfügung:

- ➤ **Hide Channel in Mixer/Matrix.** Die selektierten Kanäle sind nicht länger in TotalMix FX sichtbar, noch lassen sie sich per MIDI oder OSC fernsteuern.
- ➤ Hide Channel in MIDI Remote 1-4. Die selektierten Kanäle sind für MIDI Remote unsichtbar (CC und Mackie Protocol).
- Hide Channel in OSC Remote 1-4. Die selektierten Kanäle sind für die OSC Remote Control unsichtbar.

Im Mixer und der Matrix versteckte Kanäle sind voll funktionsfähig. Ein existierendes Routing/Mixing/FX Processing bleibt aktiv. Da der Kanal aber nicht mehr sichtbar ist sind seine Einstellungen nicht änderbar. Gleichzeitig werden versteckte Kanäle von der Liste fernsteuerbarer Kanäle entfernt, um zu verhindern, dass unbemerkt Änderungen stattfinden.

Die aktive Option *MIDI Remote x* führt zu einer Entfernung von der Liste fernsteuerbarer Kanäle. Im 8-Kanal Block einer Mackie kompatiblen Remote werden diese dann übersprungen. Daher ist eine solche Remote nicht mehr an fortlaufende Kanalsetups gebunden. Beispielsweise lassen sich die Kanäle 1/2 und 6 bis 11 steuern, wenn Kanäle 3 bis 5 versteckt sind.

Das Gleiche gilt für OSC. Durch das Entfernen weniger wichtiger Kanäle in OSC lassen sich die wichtigen als ein Block auf der Remote konzentrieren.

Der Dialog lässt sich direkt aus TotalMix aufrufen, durch einen rechten Mausklick auf einen Kanal. Dieser ist dann bereits zur schnelleren Einstellung vorselektiert.

Die Reihen Inputs, Playbacks und Outputs haben jeweils eine eigene Seite, mit Zugriff über die Reiter oben. *In Use* zeigt die derzeit im Mix verwendeten Kanäle.

Im obigen Beispiel wurde der AES Input unsichtbar gemacht. Ist AES nicht in Benutzung kann man ihn so sehr einfach ganz aus TotalMix entfernen. Komplexere Setups zeigen z.B. ausschließlich die Kanäle der Drum-Sektion, der Bläser, oder der Streicher.

Ein Doppelklick auf eine Linie öffnet den Editor für die Spalte *Name (User)*. Mit Enter springt man direkt zur nächsten Eingabe. Die Namen in der Control Room Sektion lassen sich nur hier ändern.

Nach Klick auf ein Feld in der Spalte *Color* lässt sich die Farbe des Kanalnamens ändern. Das untige Locator-Bild zeigt den Effekt und die verfügbaren Farben.

Nach der Fertigstellung eines Layouts lässt sich der gesamte Zustand als **Layout Preset** abspeichern. Ein Klick auf *Store* und den gewünschten Speicherplatz macht das aktuelle Channel Layout jederzeit aufrufbar. Umgekehrt macht *All* alle Kanäle temporär sichtbar.

Mit einem einfachen Klick ist es sodann möglich, auf eine Ansicht zu wechseln, welche nur die am Mix der Drum-Sektion, der Bläser oder der Streicher beteiligten Kanäle zeigt – oder jede beliebige andere Ansicht. Ein optimiertes Remote Layout lässt sich hier ebenfalls aktivieren, mit oder ohne visuelle Änderung. Zur Änderung des Namens des Presets genügt ein Doppelklick auf diesen.

•

Die Speicherung der Layout Presets erfolgt im Workspace. Stellen Sie daher sicher diesen zu speichern, bevor ein anderer Workspace geladen wird!

Sub führt in der Submix View zu einer Ausblendung aller Kanäle, die nicht am aktuellen Submix/Hardware Output beteiligt sind. Sub zeigt also temporär den Mix basierend auf allen Kanälen der Reihen Inputs und Playback, unabhängig vom aktuellen Layout Preset. Das macht eine Ansicht und Prüfung des aktuellen Mixes, aber auch das Einstellen des Mixes sehr einfach. Es verbessert gleichzeitig die Übersicht, gerade bei der Verwendung vieler Kanäle.

25.5.4 Scroll Location Marker

Ein weiteres Merkmal zur Verbesserung der Übersicht und der Arbeit mit TotalMix FX sind die Scroll Location Marker. Sie erscheinen automatisch, wenn die Kanäle horizontal nicht komplett in das aktuelle TotalMix FX Fenster passen. Auf der rechten Seite des Scrollbalkens jeder Reihe zu sehen, enthalten sie vier Elemente:

- Pfeil nach links. Ein Klick mit der linken Maustaste scrollt die Kanäle ganz nach links, bzw. zum ersten Kanal.
- ▶ 1. Marker Nummer 1. Zur gewünschten Position scrollen und mit der rechten Maustaste auf die 1 klicken. Ein Dialog mit genauen Informationen erscheint. Nach dem Speichern scrollt ein linker Mausklick die Kanäle an die zuvor gespeicherte Position.
- > 2. Marker Nummer 2. Siehe 1 für Details.
- Pfeil nach rechts. Ein Klick mit der linken Maustaste scrollt die Kanäle ganz nach rechts bzw. zum letzten Kanal.

Scroll Location Marker werden im Workspace gespeichert.

25.6 Reverb und Echo

Nach Klick auf FX in den *View Options / Mixer Setup* erscheint das Fenster Output FX. Hier werden alle Einstellungen für die Effekte Hall und Echo vorgenommen.

Reverb. Wird über den Button On aktiviert.

Type. Auswahl des Hall-Typs. Zur Verfügung stehen:

- > Rooms Small, Medium, Large, Walls. Raumsimulation von Räumen verschiedener Größe mit unterschiedlichem Verhalten.
- > Shorty liefert einen kurzen, reichhaltigen und warmen Hall.
- > Attack schlägt zurück.
- > Swagger reichert das Originalsignal an und macht es voller.
- > Old School bietet einen Hallklang alter Schule.
- **Echoistic** weist einen hohen Echoanteil im Nachhall auf, wodurch er auch schöne Stereoeffekte bietet.
- > 8plus9 ist eine Mischung aus Old School und Echoistic.
- Grand Wide steht für einen weiten und großen Raum.
- > Thicker läßt sich als kurzer Hall nutzen um das Originalsignal anzureichern.
- Space hat den meisten Höhenanteil und die längste Hallzeit.
- Envelope. Halleffekt mit der Möglichkeit den Lautstärkeverlauf (Hüllkurve) frei einzustellen.
- Gated. Vereinfachte Version des Envelope-Halls für abgeschnittene Hall-Effekte.

Bitte beachten Sie dass alle diese Halltypen extrem flexibel sind – durch die beiden Einsteller Smooth und Room Scale. Die meisten eignen sich sowohl als kurzer wie langer Hall, und klingen mit Smooth auf Minimum oder Maximum sehr unterschiedlich.

oder Maximum sehr unterschiedlich.

TotalMix FX besitzt Werkseinstellungen und Vorgabewerte für alle Halltypen, um eine kurze Einrichtzeit und schnelle Resultate zu ermöglichen. Bitte nehmen Sie sich die Zeit mit verschiedenen Eingangssignalen und den Einstellern zu experimentieren, um zu lernen wie unterschiedlich der Hall klingen kann und einsetzbar ist.

Allgemeine Settings

PreDelay. Verzögerung des Hallsignals. Einstellbar von 0 ms bis zu 999 ms.

Low Cut. Hochpass *vor* der Hallerzeugung, entfernt tieffrequente Signale, die keine Hallerzeugung bewirken sollen. Einstellbar von 20 Hz bis 500 Hz.

High Cut. Tiefpass *nach* der Hallerzeugung. Eine Reduzierung des Höhenanteils lässt Hallräume oft natürlicher klingen. Einstellbar von 5 kHz bis 20 kHz.

Smooth. Weicht den Halleffekt auf, hat Auswirkungen auf Stereobreite, Dichte und Klangcharakter. Einstellbar von 0 bis 100.

Width. Einstellung der Stereobreite des Hallsignals von 100 (Stereo) bis 0 (Mono.

Volume. Einstellung des Pegels mit dem der Halleffekt auf den FX Return Bus gelangt.

Spezielle Settings für Rooms

Room Scale. Bestimmt die Größe des Raumes und verändert damit Dichte und Länge des Halleffektes. Einstellbar von 0.5 bis 3.0.

Spezielle Settings für Envelope und Gated

Attack. Dauer des Lautstärkeanstiegs des Hallsignals. Auch Anstiegszeit. Einstellbar von 5 ms bis 400 ms.

Hold. Dauer der gleichbleibenden Lautstärke des Hallsignals. Auch Haltezeit. Einstellbar von 5 ms bis 400 ms.

Release. Dauer des Lautstärkeabfalls des Hallsignals. Auch Abfallzeit. Einstellbar von 5 ms bis 400 ms.

Spezielle Settings für Space

Reverb Time. Einstellung der Halldauer für einen Lautstärkeabfall von 20 dB. Einstellbar von 0.1 s bis 4.9 s.

High Damp. Einstellung der Höhendämpfung über die Zeit für das Hallsignal. Prinzipiell ein Tiefpass wie High Cut, der sich aufgrund des Funktionsprinzips dieses Halls etwas anders auswirkt. Einstellbar von 5 kHz bis 20 kHz.

Echo. Wird über den Button On aktiviert.

Type. Auswahl des Echo-Algorithmus. Zur Verfügung stehen:

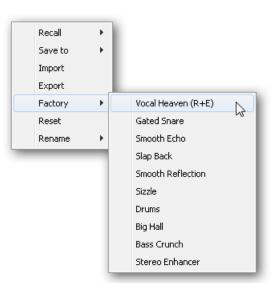
- > Stereo Echo. Je ein getrennter Echogenerator auf rechtem und linkem Kanal. Damit folgt das Echo im Stereopanorama der Klangquelle.
- > Stereo Cross. Echogenerator auf linkem und rechtem Kanal mit gekreuzter Rückkopplung, die nur für die Stereoanteile gilt. Ist das Eingangssignal nur auf dem rechten oder linken Kanal vorhanden verhält sich Stereo Cross wie das Pong-Echo.
- **Pong Echo.** Erzeugt ein zwischen linkem und rechtem Kanal hin und her springendes Echo, unabhängig vom zugeführten Quellsignal.

Settings

Delay Time. Einstellung der Verzögerungszeit für das erste Echo.

BPM. Durch Doppelklick auf das untere Parameterfeld lässt sich im Dialog die Verzögerungszeit auch als *Beats Per Minute* eingeben.

Feedback. Rückkopplung zur Erzeugung weiterer Echos.


Width. Einstellung der Stereobreite des Echosignals von 100 (Stereo) bis 0 (Mono).

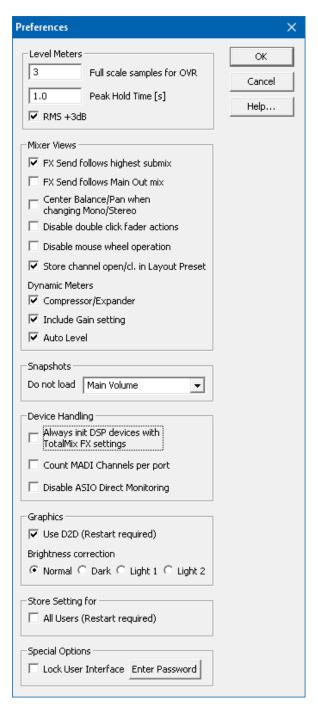
Volume. Einstellung des Pegels mit dem der Echoeffekt auf den FX Return Bus gelangt.

High Cut (HC). Option für einen natürlicheren Klang, bis hin zur absichtlichen Entfernung aller Höhen im verzögerten Signal.

Preset. Einstellungen des Reverb und des Echo können jederzeit gespeichert und geladen werden. Ein Kick auf Preset öffnet ein Menü mit mehreren Unterpunkten:

- Recall: Zuvor vom User gespeicherte Presets lassen sich hier auswählen und laden
- Save to: Es stehen 16 Speicherplätze zur Verfügung (Reverb/Echo Preset 1 bis 16)
- Import: L\u00e4dt eine zuvor gespeicherte TM FX Reverb Datei (.tmrv) oder eine TM FX Echo Datei (.tmeo)
- Export: Speichert den aktuellen Zustand als TM FX Reverb Datei (.tmrv) oder als TM FX Echo Datei (.tmeo)
- Factory: Enthält 10 Beispiele für die Konfiguration des Reverb
- Reset: Reset des Reverb oder Echo
- ➤ **Rename:** Die Presets 1 bis 16 können umbenannt werden. Die Änderung wird sowohl in der Recall- als auch der Save to-Liste sichtbar.

25.7 Preferences


Über das Menü Options oder direkt über F2 öffnet sich die Dialogbox Preferences.

Level Meters

- Full scale samples for OVR. Anzahl der Samples zum Auslösen der Over-Anzeige (1 bis 10).
- Peak Hold Time. Haltezeit des Spitzenwertes. Einstellbar von 0.1 bis 9.9 s.
- RMS +3 dB. Korrigiert den RMS Wert um +3 dB, damit Vollaussteuerung sowohl bei Peak als auch bei RMS bei 0 dBFS erfolgt.

Mixer Views

- FX Send follows highest Submix. Koppelt den FX Send Regler an den Kanalfader. Da TotalMix mehrere Routings pro Kanal unterstützt, muss definiert werden, welchem Fader (nur einer ist sichtbar) der FX Send folgt. Dies ist immer der mit der höchsten Faderstellung, also dem höchsten Gain.
- FX Send follows Main Out mix. Koppelt den FX Send Regler an den Kanalfader des Main Out Submix. Dies ist ein typisches Live-Feature, bei dem der FX Send immer an Fader des wichtigsten Ausgangs gebunden bleibt den Main Out. Beim verändern anderer Submixe folgt der FX Send nicht der Faderbewegung.
- Center Balance/Pan when changing Mono/Stereo. Beim Umschalten eines Stereo-Kanals in zwei Mono-Kanäle werden die Pans hart links/rechts gelegt. Diese Option stellt die Pans alternativ auf Mitte.
- Disable mouse wheel operation. Deaktiviert das Mausrad.
- Disable double click fader action. Verhindert das unabsichtliche Verstellen der Fader, z.B. bei der Nutzung empfindlicher Touchpads.
- Store channel open/close in Layout Preset. L\u00e4dt auch den Zustand der Kanalfenster (Setting/EQ/Dyn).

Dynamic Meters

- Compressor/Expander. Aktiviert die Anzeige der Gain Reduction des Compressors/Expanders als schmale blaue Linie in den Level Metern des jeweiligen Kanals.
- Include Gain setting. Der aktuell über das Poti Gain eingestellte feste Verstärkungswert wird ebenfalls in der Anzeige berücksichtigt. Dies kann zu positiven Werten führen, wobei die Anzeige auf +6 dB begrenzt ist. Ist die Auswahl Compressor/Expander nicht aktiviert ist diese Option nicht verfügbar und daher ausgegraut.
- ➤ Auto Level. Aktiviert die Anzeige der variablen Verstärkung des Auto Level. Da Auto Level je nach Einstellung das Audiosignal abschwächt oder anhebt, kann die Anzeige sowohl negativ (typische Gain Reduction) als auch positiv (oberhalb 0 dB, Verstärkung) ausfallen.

Snapshots

➤ Do not load - Main Volume, Main/Phones Volumes, Control Room Settings. Die im Snapshot gespeicherten Werte der ausgewählten Option werden nicht geladen, damit bleibt die aktuelle Einstellung unverändert.

Device Handling

- Always init DSP devices with TotalMix FX settings. Dient zur Unterdrückung der Mismatch-Meldung nach Stand-Alone Betrieb. Aktuelle Settings im Gerät gehen verloren.
- ➤ Count MADI Channels per port. Nicht für das Fireface 802 verfügbar.
- Disable ASIO Direct Monitoring. Deaktiviert das ASIO Direct Monitoring (ADM) für das Fireface 802 in TotalMix FX.

Graphics

- ➤ Use D2D (Change requires restart). Default: Aktiv. Lässt sich im Falle von Graphik-Inkompatibilitäten ausschalten, was aber eine höhere CPU-Last zur Folge hat.
- Brightness Correction. Anpassung der Helligkeit der Darstellung von TotalMix FX.

Store Setting for

All Users (Restart required). Siehe nächstes Kapitel.

Special Options

- Lock User Interface. Default off. Bei Aktivierung wird der aktuelle Mix-Zustand eingefroren. Fader, Knöpfe und Schalter die den Mix beeinflussen lassen sich nicht mehr betätigen.
- > Enter Password (nur Windows). Sichert die gesperrte Benutzeroberfläche zusätzlich mit einem Passwort ab.

25.7.1 Store for Current or All Users

TotalMix FX speichert alle Settings, Workspaces und Snapshots für den aktuellen Benutzer in:

Seit Vista: C.\Users\Username\AppData\Local\TotalMixFX

Mac Current User: user/Library/Application Support/RME TotalMix FX

Mac All Users: /Library/Application Support/RME TotalMix FX

Bei Nutzung einer Workstation von mehreren Anwendern arbeitet jeder mit eigenen Settings. Sollen die Einstellungen jedoch für alle Anwender gleich oder vorgegeben sein, kann TotalMix FX auch das Verzeichnis *All User* nutzen. Ein Admin kann sogar das Attribut der Datei **lastFireface8021.xml** auf *Nur Lesen* setzen, was bei jedem Neustart von TotalMix FX den alten Zustand (Inhalt der Datei) herstellt. Die xml-Datei wird beim Beenden aktualisiert. Also einfach TotalMix wie gewünscht einstellen und beenden (rechte Maustaste auf Symbol im Systray oder Exit), dann Datei-Attribut ändern.

25.8 Settings

Über das Menü Options oder direkt über F3 öffnet sich die Dialogbox Settings.

25.8.1 Mixer Page

Auf der Mixer-Seite werden typische Mixer-Settings konfiguriert, wie Talkback-Quelle, Stärke des Dim während Talkback, die gespeicherte Monitorlautstärke, oder der für die Funktion External Input benutzte Eingang.

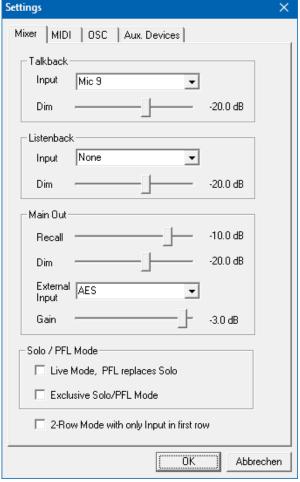
Talkback

- Input. Auswahl des Eingangskanals über den das Talkback-Signal hereinkommt. Default: None.
- Dim. Stärke der Abschwächung aller zu den Phones gehenden Signale in dB.

Listenback

- Input. Auswahl des Eingangskanals des Listenback-Signals (Mikrofon im Aufnahmeraum). Default: None.
- > **Dim.** Stärke der Abschwächung aller zum *Main Out* gehenden Signale in dB.

Main Out


- Recall. Benutzerdefinierte Abhörlautstärke, die mit dem Taster Recall am Gerät oder in TotalMix aktiviert wird.
- Dim. Stärke der Abschwächung des Main Out in dB.
- External Input. Auswahl des Stereo-Eingangs, welcher das Mix-Signal auf dem Main Out ersetzt wenn Ext. In aktiviert wurde. Die relative Lautstärke wird über den Schieberegler Gain eingestellt.

Solo/PFL Mode

Live Mode, PFL replaces Solo. PFL bedeutet Pre Fader Listening, also vor dem Fader abhören. Diese Funktion ist be-

- Exclusive Solo/PFL Mode. Nur ein Solo oder PFL kann aktiv sein. Die Auswahl eines Solo/PFL beendet automatisch den vorher gewählten.
- **2-Row Mode with only Input in first row.** Die Software Playback Kanäle werden in der unteren Reihe, neben den Hardware Outputs platziert.

25.8.2 MIDI Page

Auf der MIDI-Seite befinden sich vier unabhängige Einstellungen für bis zu vier MIDI Remote Controls, welche CC Commands oder das Mackie Control Protocol nutzen.

Index

Auswahl einer von vier Settings-Seiten und damit Fernbedienungseinstellungen. Alle Einstellungen bleiben automatisch erhalten. Zum Ein- und Ausschalten der jeweiligen Remote dient die Option 'In Use'.

MIDI Remote Control

- MIDI In. Eingang von dem TotalMix die MIDI Remote Daten empfängt.
- > MIDI Out. Ausgang über den TotalMix MIDI Remote Daten sendet.
- ➤ **Disable MIDI in background.** Deaktiviert MIDI Remote Control sobald eine andere Applikation im Vordergrund ist, oder wenn TotalMix minimiert wurde.

Mackie Control Options

- ➤ Enable Protocol Support. Nach Abschaltung dieser Option reagiert TM FX nur noch auf die Control Change Befehle aus Kapitel 28.5.
- Extender to. Setzt die aktuelle Remote als Extender zur Main Remote. Beide Remotes werden als ein Block angezeigt und navigieren simultan.
- Map Stereo to 2 Mono Channels. Ein Fader der Remote steuert einen (Mono) Kanal in TM FX. Bei Stereo-Kanälen nicht sinnvoll.
- Submix Selection in Input/Playback Row. Ermöglicht eine Selektion des aktuellen Submixes ohne in die dritte Reihe wechseln zu müssen. Bei der Verwendung von Mono- und Stereo-Kanälen sind erste und dritte Reihe jedoch oft nicht identisch, was die Auswahl sehr unübersichtlich macht.
- Enable full LCD support. Aktiviert vollständigen Mackie Control LCD Support mit acht Kanalnamen und acht Volume-/ Pan-Werten.
- Send User defined Names. Vom Anwender definierte Kanalnamen werden per MIDI an die Remote gesendet und dort falls unterstützt im Display angezeigt.
- Send Level Messages. Aktiviert die Übertragung der Level Meter Daten. Peak Hold aktiviert die Peak Hold Funk-

Settings × Mixer MIDI OSC Aux. Devices Remote Controller Select 02 03 04 ✓ In Use ○ 1 MIDI Connection MIDI In FF802 Midi Port 1 ▼| MIDI Dut FF802 Midi Port 1 Disable MIDI in background Mackie Control Options Enable Protocol Support □ Extender to □ 1 □ 2 □ 3 □ 4 Map Stereo to 2 Mono Channels Submix Selection in Input/Playback Row Enable full LCD support Send User defined Names Send Level Messages Peak Hold Abbrechen

tion wie sie in den Preferences für die TotalMix Level Meter eingestellt wurde.

<u>Hinweis</u>: Wird als MIDI Out NONE gewählt, kann TotalMix FX auch per Mackie Control MIDI Befehlen ferngesteuert werden, es erscheint aber keine Kennzeichnung eines 8-kanaligen Kanalblocks.

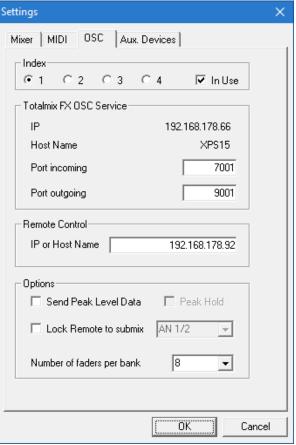
25.8.3 OSC Page

Auf der OSC-Seite befinden sich vier unabhängige Einstellungen für bis zu vier über Open Sound Control (OSC) gesteuerte MIDI Remotes. Dies ist ein Netzwerk-basiertes Protokoll, welches beispielsweise Apples iPad mit der App *TouchOSC* oder *Lemur* befähigt, TotalMix FX drahtlos auf dem Mac oder Windows Computer fernzusteuern.

Index

Auswahl einer von vier Settings-Seiten und damit Fernbedienungseinstellungen. Alle Einstellungen bleiben automatisch erhalten. Zum Ein- und Ausschalten der jeweiligen Remote dient die Option 'In Use'.

TotalMix FX OSC Service

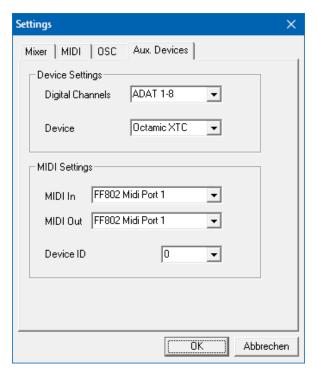

- IP. Zeigt die Netzwerkadresse des Computers auf dem TotalMix FX (local host) läuft. Diese Adresse muss bei der Remote eingetragen werden.
- > Host Name. Lokaler Computername.
- Port incoming. Muss mit dem Eintrag 'Port outgoing' der Remote übereinstimmen. Typische Werte sind 7001 oder 8000.
- Port outgoing. Muss mit dem Eintrag 'Port incoming' der Remote übereinstimmen. Typische Werte sind 9001 oder 9000.

Remote Control

IP or Host name. Hier ist die Netzwerkadresse oder der Host-Name der Remote Control einzutragen. Im Allgemeinen arbeitet die IP-Adresse zuverlässiger als der Host-Name.

Options

- Send Peak Level. Aktiviert die Übertragung der Level Meter Daten. Peak Hold aktiviert die Peak Hold Funktion wie sie in den Preferences für die TotalMix Level Meter eingestellt wurde.
- Lock Remote to submix. Bindet die aktuell konfigurierte Remote an einen wählbaren Submix, so dass kein anderer verstellbar ist. Dies verhindert unabsichtliche Verstellungen im Multi-Remote Monitoring.
- Number of faders per bank. Wählbar sind 8 (Default), 12, 16, 24, 32 und 48. Zu beachten ist, dass eine höhere Anzahl an Fadern in leistungsschwächeren Netzwerken, insbesondere drahtlosen, nicht immer reibungslos funktionieren mag.


25.8.4 Aux Devices

RMEs OctaMic XTC ist ein so flexibler wie hochwertiger 8-Kanal Mikrofon-, Line- und Instrument-Vorverstärker, mit integrierter AD-Wandlung nach ADAT, AES/EBU und MADI, plus 4 Kanal DA-Wandlung zwecks Monitoring. Er kann als universelle I/O-Erweiterung für das Fireface 802 und andere Interfaces dienen.

Zur Vereinfachung der Bedienung lassen sich die wichtigsten Parameter des XTC (Gain, 48V, Phase, Mute, AutoSet) direkt in den Eingangskanälen von TotalMix FX kontrollieren. Diese spezielle Fernbedienung nutzt MIDI jeglichen Formates (DIN, USB, MIDI over MADI).

Device Settings

- Digital Channels. Auswahl der Kanäle, auf denen die acht analogen Eingänge des OctaMic XTC anliegen. Beim Fireface 802 sind dies die ADAT-Kanäle 1-8 oder 9-16.
- Device. Derzeit steht nur der OctaMic XTC als Auswahl zur Verfügung.

MIDI Settings

- > MIDI In. Auswahl der aktuellen MIDI Verbindung zum OctaMic XTC.
- > MIDI Out. Auswahl der aktuellen MIDI Verbindung zum OctaMic XTC.
- **Device ID.** Default 0. Diese Einstellung bezieht sich auf die aktuelle Auswahl der Digital Channels.

Bei der Nutzung mehrerer OctaMic XTC müssen diese unterschiedliche Device IDs besitzen (Konfiguration erfolgt im OctaMic XTC). In *Aux Devices* lassen sich den ADAT-Blöcken verschiedene Device IDs zuweisen. Die Speicherung erfolgt sofort bei Auswahl einer Device ID. Die Prüfung der Zuweisungen erfolgt durch abwechselnde Anwahl der beiden 8-Kanal Blöcke.

Der Bildausschnitt rechts zeigt die Änderungen im Kanal, sobald die obigen Einstellungen mit OK bestätigt wurden. Die ADAT-Kanäle zeigen neue Bedienelemente für Phantomspeisung, Inst/PAD, Gain und AutoSet. Die Steuerung arbeitet bidirektional, ein Ändern des Gains am Gerät zeigt sich sofort in TotalMix. Das Ändern des Gains in TotalMix ist auch am Display des Geräts sichtbar.

Damit die Fernsteuerung funktioniert, müssen die aktuell benutzten MIDI-I/Os des XTC auf *Control* stehen. Details dazu enthält das Handbuch des XTC.

25.9 Hotkeys und Bedienung

TotalMix FX besitzt zahlreiche Tasten- und Maus-/Tastenkombinationen, um die Bedienung zu vereinfachen und zu beschleunigen. Die folgende Liste bezieht sich auf Windows. Auf dem Mac arbeiten diese ebenso, wenn Strg mit der Taste cmd (**) ersetzt wird.

Die **Umschalt**-Taste dient bei den Fadern und in der Matrix zur Feineinstellung des Gain. Auf allen Drehknöpfen dient sie dagegen zur Beschleunigung.

Ein Klick auf den Fader bei gedrückter **Umschalt**-Taste fügt den Fader der temporären Fader-gruppe hinzu.

Wird bei gedrückter **Strg**-Taste irgendwo in die **Faderbahn** geklickt, springt der Fader auf 0 dB, beim nächsten Klick auf −∞. Gleiche Funktion: Doppelklick per Maus.

Wird bei gedrückter **Strg-**Taste auf einen der **Panorama-** oder **Gain-**Knöpfe geklickt springt dieser in die Mittelstellung. Gleiche Funktion: Doppelklick per Maus.

Beim Klick auf den **Panorama**-Knopf mit gedrückter **Umschalt**-Taste springt dieser nach ganz links, mit **Strg-Umschalt** nach ganz rechts.

Wird bei gedrückter **Strg-**Taste auf einen der Kanal-Settingsbuttons (Schmal/Breit, Settings, EQ, Dynamics) geklickt, ändern alle Kanäle rechts davon ihren Status. Dadurch lassen sich z.B. alle Panels gleichzeitig öffnen und schließen.

Ein **Doppelklick** der Maus auf einen Drehknopf oder dessen numerisches Feld öffnet den jeweiligen Dialog *Input Value*, mit dem sich der gewünschte Wert per Tastatur eingeben lässt.

Bei gedrückt gehaltener Maustaste erhöht (Bewegung nach oben) oder verringert (Bewegung nach unten) sich der Wert im Wertefeld.

Strg-N öffnet den Dialog Function Select zur Erstellung eines neuen TotalMix-Fensters.

Strg-W öffnet den Dialog Datei Öffnen des OS zum Laden einer TotalMix Workspace Datei.

Die Taste **W** startet den *Workspace Quick Select* zur direkten Auswahl oder Abspeicherung von bis zu 30 Workspaces.

Die Taste **M** schaltet das aktive Fenster in die Mixer View. Die Taste **X** schaltet das aktive Fenster in die Matrix View. **Strg-M** dagegen öffnet ein neues Mischerfenster, **Strg-X** ein neues Matrixfenster. Ein nochmaliges Strg-M beziehungsweise Strg-X schließt das neue Fenster.

F1 öffnet die Online-Hilfe. Der Level Meter Setup Dialog lässt sich (wie auch in DIGICheck) über **F2** aufrufen. Die Dialogbox Preferences öffnet sich mit **F3**.

Alt-F4 schließt das aktuelle Fenster.

Alt und **Zahl** (1 bis 8, nicht Nummernblock!) lädt die Workspaces aus Workspace Quick Select (Hotkey W) per Tastatur.

25.10 Menü Options

Deactivate Screensaver. Nach Anwahl dieser Option wird der eventuell in Windows eingestellte Bildschirmschoner temporär deaktiviert.

Always on Top. Nach Auswahl dieser Option (dargestellt durch das Häkchen-Symbol) wird das TotalMix-Fenster auf dem Windows-Desktop immer oben dargestellt wird. Hinweis: Bei Aktivierung dieser Option kann es Probleme mit der Anzeige von Hilfe-Texten oder

Dialogboxen geben, da sich TotalMix auch vor diese Fenster setzt.

Enable MIDI / OSC Control. Aktiviert externe MIDI Kontrolle des TotalMix Mischers. Im Mackie Protokoll Modus werden die unter MIDI-Kontrolle stehenden Kanäle durch einen Farbwechsel des Namensfeldes kenntlich gemacht.

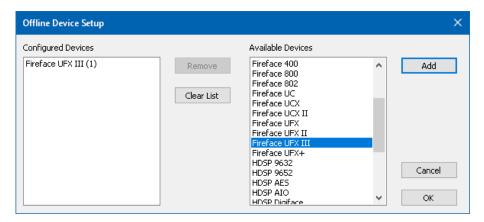
Submix linked to MIDI / OSC control (1-4). Die 8-Kanal Gruppe folgt dem jeweils ausgewählten Submix, also Hardware Output, sowohl wenn auf der Remote ein anderer Submix gewählt wird als auch wenn dies in TotalMix passiert. Bei der Nutzung mehrerer Fenster kann es sinnvoll sein, diese Funktion in einigen Fenstern abzuschalten. Die Ansicht ändert sich dann nicht.

Preferences. Öffnet eine Dialogbox zur Einstellung diverser Funktionen der Level Meter und des Mixers. Siehe Kapitel 25.7. Hotkey F2.

Settings. Öffnet eine Dialogbox zur Einstellung diverser Funktionen von Talkback, Listenback, Main Out und der MIDI Remote Control. Siehe Kapitel 25.8. Hotkey F3.

Channel Layout. Kanäle visuell und vor der Remote Control verstecken. Siehe Kapitel 25.5.3.

ARC & Key Commands. Öffnet ein Fenster zur Konfiguration der programmierbaren Tasten der optionalen ARC USB, sowie der Tasten F4 bis F8 der Computertastatur.


Reset Mix. Enthält mehrere Optionen um den Mischerzustand zu resetten:

- > Straight playback with all to Main Out. Alle Playback-Kanäle sind 1:1 zu den Hardwareausgängen geroutet. Gleichzeitig erfolgt ein Mixdown aller Playbacks auf den Main Out. Die Einstellungen der Fader in der dritten Reihe werden nicht verändert.
- > Straight Playback. Alle Playback-Kanäle sind 1:1 zu den Hardwareausgängen geroutet. Die Einstellungen der Fader in der dritten Reihe werden nicht verändert.
- Clear all submixes. Löscht alle Submixes.
- Clear channel effects. Schaltet alle EQs, Low Cuts, Reverb, Echo, Dynamics und Stereo Width aus und deren Drehknöpfe auf die Defaulteinstellung.
- Set output volumes. Alle Fader der dritten Reihe werden auf 0 dB gestellt, Main und Speaker B auf -10 dB.
- **Reset channel names.** Entfernt alle vom Benutzer zugewiesenen Namen.
- Set all channels mono. Konfiguriert alle Kanäle von TotalMix FX in den Mono-Modus.
- > Set all channels stereo. Konfiguriert alle Kanäle von TotalMix FX in den Stereo-Modus.
- > Set inputs mono / outputs stereo (ADM). Bevorzugtes Setup für höchste ASIO Direct Monitoring Kompatibilität. In den meisten Fällen verhindern Mono Hardware Outputs ADM. Mono Eingänge sind meist kompatibel. Falls nicht erfolgt falsches Panning.

Total Reset. Playback-Routing 1:1 mit Mixdown auf Main Out. Abschaltung aller anderen Funktionen.

Operational Mode. Setzt den Betriebsmodus von TotalMix FX. Zur Auswahl stehen *Full Mode* (Default, Mixer aktiv, alle Routingoptionen verfügbar), und *Digital Audio Workstation Mode* (1:1 Playback Routing, kein Mix der Eingänge). Siehe Kapitel 29 für Details.

Offline Device Setup. Macht alle von TotalMix FX unterstützen Geräte auch Offline verfügbar. Dieser 'Demo'-Modus kann Workspaces laden und speichern, und ermöglicht damit auch eine Offline-Editierung und optische Prüfung von Workspaces und Snapshots.

<u>Setup</u>: Gewünschte Geräte markieren und per Add zu der Liste der Configured Devices hinzufügen. Dialog per OK schließen.

Mixer und Matrix lassen sich nun auch ohne angeschlossenes Gerät öffnen. Die Geräteauswahl erfolgt rechts oben über die Deviceauswahl im Control Strip.

Network Remote Settings. Einstellungen um TotalMix FX mit TotalMix Remote über Netzwerk fernzusteuern. Siehe Kapitel 30.

Store current state into device. Das Gerät besitzt 6 Speicherplätze zur Speicherung des aktuellen Zustandes. Diese Funktion wurde speziell für den Stand-Alone Betrieb entwickelt, in dem es keine Playback-Kanäle gibt. Daher resultiert eine Nutzung unter Windows, Mac und iOS in unvollständigen Setups.

Die ins Gerät gespeicherten Setups lassen sich sowohl über simple MIDI-Noten (siehe Kapitel 28.6) als auch die optionale ARC USB abrufen.

Enable Stand-Alone MIDI. Ist das Fireface 802 nicht mit einem Computer verbunden kann es direkt per MIDI kontrolliert werden. Siehe auch Kapitel 28.6.

Enable Stand Alone ARC USB. Ermöglicht die Nutzung der ARC USB am hinteren Remote-Port wenn im Stand-Alone Modus.

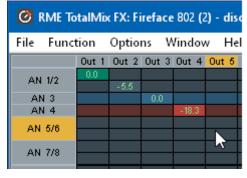
25.11 Menü Window

Zoom Options 100%, 135%, 200%, 270%. Abhängig von Größe und Auflösung des Bildschirms kann TotalMix FX zu klein, und die Bedienelemente schwer bedienbar sein. Zusammen mit dem 2-Row Mode ermöglichen diese Optionen verschiedenste Darstellungsgrößen.

Hide Control Strip. Entfernt den Control Strip aus dem Sichtfeld, um Platz für andere Elemente zu gewinnen.

26. Die Matrixx

26.1 Überblick


Während die bisher vorgestellte Ansicht von TotalMix ähnlich wie Mischpulte Stereo-basiert arbeitet, existiert mit der Matrix auch ein Mono-basiertes Verfahren der Kanalzuweisung. Die Fireface-Matrix geht aber noch einen Schritt weiter, denn anders als in einer Kreuzschiene oder mechanischen Steckfeld erlaubt TotalMix einen beliebigen Verstärkungswert pro Kreuzungspunkt.

Matrix und TotalMix sind verschiedene Darstellungsweisen der gleichen Vorgänge. Daher sind beide Ansichten immer synchron. Egal was man in einer der beiden Oberflächen einstellt, es findet sich sofort in der anderen wieder.

26.2 Elemente der Oberfläche

Das optische Erscheinungsbild der Matrix ergibt sich zunächst durch den Aufbau des 802 FS:

- > Horizontale Beschriftung. Alle Hardware-Ausgänge
- Vertikale Beschriftung. Alle Hardware-Eingänge, darunter alle Playback-Kanäle
- > Grünes Feld 0.0 dB. Standard 1:1 Routing
- Dunkelgraues Feld mit Zahl. Zeigt den jeweils eingestellten Verstärkungswert in dB
- > Blaues Feld. Dieses Routing ist gemutet
- > Rotes Feld. Phase 180° gedreht (invertiert)
- Dunkelgraues Feld. Kein Routing.

Damit die Übersicht bei verkleinertem Fenster nicht verloren geht, sind die Beschriftungen schwebend umgesetzt, verschwinden also beim Scrollen nicht aus dem Fenster. Ein Rechtsklick der Maus auf diese öffnet das Kontextmenü mit den gleichen Optionen wie in der Mixer View: Copy / Mirror / Paste /Clear input channels und Submixes.

26.3 Bedienung

Die Bedienung der Matrix ist sehr einfach. Der aktuelle Kreuzungspunkt ist leicht zu identifizieren, da die Beschriftung am Rand entsprechend der aktuellen Mausposition orange aufleuchtet.

- Soll der Eingang 1 auf Ausgang 1 geroutet werden, wird bei gedrückter Strg-Taste ein Mal mit der Maus auf den Kreuzungspunkt In 1 / AN 1 geklickt. Es erscheinen zwei grüne 0.0 dB Felder, ein nochmaliger Klick entfernt sie wieder.
- ➤ Um einen anderen Verstärkungsfaktor einzustellen (entspricht einer anderen Faderstellung, siehe gleichzeitige Darstellung in der Mixer-Ansicht), wird die Maus bei gedrückter linker Maustaste vom Feld aus auf- oder abwärts bewegt. Die Zahl im Feld verändert sich entsprechend. Der zugehörige Schieberegler in TotalMix bewegt sich ebenfalls, falls das zu beeinflussende Routing sichtbar ist.
- Rechts befindet sich der Control Strip aus dem Mischerfenster, angepasst an die Matrix. Der Knopf für die temporäre Fadergruppe fehlt ebenso wie alle View Options, da sie hier keinen Sinn machen. Stattdessen kann über den Knopf Mono Mode bestimmt werden, ob alle Aktionen in der Matrix für zwei Kanäle oder nur für einen gelten.

Die Matrix ersetzt eine Mischpultansicht nicht in jedem Fall, aber sie verbessert die Routing-Möglichkeiten deutlich, und - besonders wichtig - ist eine hervorragende Methode, einen schnellen Überblick über alle aktiven Routings zu erhalten. Und da die Matrix mono arbeitet, lassen sich gewünschte Routings mit gewünschten Gains sehr einfach einstellen.

Weitere Hinweise zur Bedienung

- Ein Doppelklick auf einen Kreuzungspunkt wechselt zwischen 0.0 dB und Mute.
- Ein Klick auf die umgebende Beschriftung mit gedrückter Strg-Taste, oder ein Doppelklick auf diese aktiviert/deaktiviert Mute für alle horizontalen oder vertikalen Kreuzungspunkte.
- Ein Klick auf die umgebende Beschriftung mit gedrückter Umschalt-Taste aktiviert/deaktiviert Phase für alle horizontalen oder vertikalen Kreuzungspunkte.

27. Tipps und Tricks

27.1 ASIO Direct Monitoring (Windows)

Programme die ADM (ASIO Direct Monitoring) unterstützen (Samplitude, Sequoia, Cubase, Nuendo etc.) senden Kontrollbefehle an TotalMix. Diese zeigt TotalMix auch direkt an. Wird ein Fader im ASIO-Host verstellt, bewegt sich der entsprechende Fader in TotalMix ebenfalls. TotalMix reflektiert alle ADM-Gains und Pans in Echtzeit.

Aber: die Fader bewegen sich nur mit wenn das aktuelle Routing (der ausgewählte Submix) dem aktuellen Routing im ASIO-Host entspricht. Die Matrix dagegen zeigt jegliche Veränderung, da sie alle Routings innerhalb eines Fensters darstellt.

27.2 Kopieren eines Submix

TotalMix ermöglicht das Kopieren kompletter Submixe auf andere Ausgänge. Wird ein relativ aufwändiger Submix mit minimalen Änderungen auch auf einem anderen Ausgang benötigt, so lässt sich der gesamte Submix auf den anderen Ausgang kopieren. Rechtsklick mit der Maus auf dem originalen Submixausgang, also Hardware Output, im Kontextmenü Copy Submix wählen. Nun Rechtsklick mit der Maus auf dem gewünschten Submixausgang, im Kontextmenü Paste Submix wählen. Dann die Detailänderungen durchführen.

27.3 Duplizieren des Ausgangssignals (Mirror)

Soll ein Mix an zwei (oder mehr) verschiedene Hardwareausgänge gleichzeitig gehen, kann dieser über die Funktion *Mirror* an beliebig viele andere Ausgänge gelangen. Ein Rechtsklick auf den Quellausgang ergibt die Option *Copy/Mirror* <*name*>. Ein weiterer Rechtsklick auf den Zielausgang, und *Mirror Output of* <*name*> erstellt eine komplette, von nun an synchrone Kopie auf diesem Ausgang. Dabei bleiben der Ausgangsfader als auch EQ und FX des Ausgangs vollkommen unabhängig.

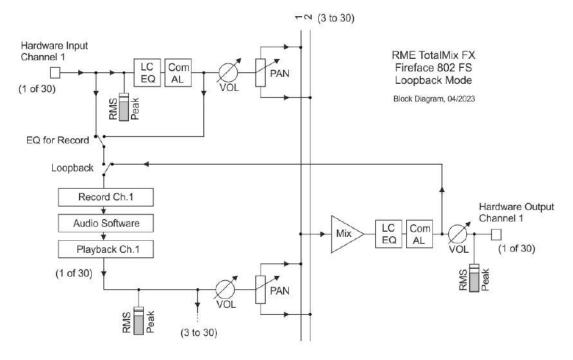
27.4 Löschen eines Submix

Das Löschen komplexer Routings erfolgt am schnellsten durch Selektion des entsprechenden Ausgangskanals in der Mixer-Ansicht per rechtem Mausklick, und Anwahl des Menüpunktes *Clear Submix*. Da TotalMix FX ein unbegrenztes Undo enthält kann das Löschen problemlos widerrufen werden.

27.5 Kopieren und Einfügen

Die obigen drei Tipps basieren auf Einträgen im Kontextmenü, welches in allen Kanälen von TotalMix FX existiert. Diese Menüs sind in der Matrix nur per Rechtsklick auf den Kanalbezeichnern aufrufbar. Die Einträge sind selbsterklärend und abhängig von der Kanalart. Der Eingangskanal bietet Clear, Copy input, Paste the input mix und Paste FX. Auf einem Wiedergabekanal erscheinen Copy, Paste und Clear the playback mix. Ein Ausgangskanal zeigt Copy- und Mirror-Funktion für den aktuellen Submix, sowie ein Copy der FX- Einstellungen.

Diese Optionen bieten ausgefeilte und mächtige Funktionen um schnell das eigentlich unmögliche zu tun. Trotzdem muss man keine Angst haben seinen Mix zu zerstören, da ein simpler (oder mehrfacher) Klick auf Undo einen jederzeit zum Ursprungszustand zurückbringt!


27.6 Aufnahme eines Submix - Loopback

TotalMix besitzt eine interne Schleifen-Funktion (englisch Loopback), von den Hardware Outputs zur Aufnahmesoftware. Statt des am Hardwareeingang anliegenden Signales wird das am Hardwareausgang ausgegebene Signal zur Aufnahmesoftware geleitet. Auf diese Weise können komplette Submixes ohne eine externe Schleifenverkabelung (Loopback) aufgenommen werden. Auch kann eine Software die Wiedergabe einer anderen Software aufnehmen.

Die Funktion wird über den Button **Loopback** in den Settings der Hardware Outputs aktiviert. Der Hardwareeingang des jeweiligen Kanals geht in diesem Modus zwar nicht mehr zur Aufnahmesoftware, jedoch weiterhin zu TotalMix. Er kann daher durch TotalMix an einen beliebigen Hardwareausgang geroutet, und über die Submixaufnahmefunktion trotzdem aufgenommen werden.

Da jeder der 15 Stereo-Hardwareausgänge zur Aufnahmesoftware geschaltet werden kann, und die jeweiligen Hardwareeingänge prinzipiell nicht verloren gehen, bietet TotalMix insgesamt eine unerreichte Flexibilität und Performance.

Die Gefahr einer Rückkopplung, bei Loopback-Verfahren prinzipiell unvermeidlich, ist gering, da die Rückkopplung keinesfalls im Mischer auftreten kann, sondern nur wenn die Audiosoftware in den Software-Monitor-Modus geschaltet wird.

Das Blockschaltbild zeigt, wie das Eingangssignal der Software über Playback ausgegeben, und von dort über den Hardware Output zurück zum Softwareeingang gelangt.

Das Blockschaltbild zeigt auch, warum sich bei aktiviertem Loopback der EQ des Hardwareausgangs im Aufnahmeweg befindet. Mit Loopback aktiv ist der EQ des Eingangs selbst bei aktivierter Option *DSP – EQ+D for Record* nicht im Aufnahmeweg, sondern nur im Monitoring.

Aufnahme einer Softwarewiedergabe

Soll die Wiedergabe einer Software von einer anderen Software aufgenommen werden, tritt in der Praxis oft folgendes Problem auf: Die Aufnahmesoftware versucht den gleichen Playback-Kanal zu öffnen wie die gerade abspielende, oder die abspielende hat bereits den Kanal geöffnet der als Aufnahmekanal benutzt werden soll.


Dieses Problem lässt sich jedoch einfach umgehen. Dazu wird zunächst überprüft, dass die Bedingungen für Multi-Client Betrieb eingehalten werden (keine Überschneidungen der Record/Playback Kanäle der beiden Programme). Dann wird das Wiedergabesignal mittels TotalMix auf einen Hardwareausgang im Bereich der Aufnahmesoftware geroutet, und per Loopback für Aufnahme aktiviert.

Zusammenmischen von Eingangssignalen für die Aufnahme

In einigen Fällen macht es Sinn, verschiedene Eingangssignale gemeinsam auf einem Kanal aufzunehmen. TotalMix Loopback erspart das externe Mischpult. Die Eingangssignale werden auf einen gemeinsamen Ausgang gemischt, dieser Ausgang dann per Loopback zum Aufnahmekanal umdefiniert. Auf diese Weise lassen sich beliebig viele Eingangssignale aus getrennten Quellen auf einem beliebigen Kanal in nur einer Spur aufnehmen.

27.7 MS Processing

Das Mitte/Seite-Prinzip beschreibt eine spezielle Positionierungstechnik bei Mikrofonaufnahmen, als dessen Resultat auf einem Kanal das Mittensignal, auf dem anderen das Seitensignal übertragen wird. Diese Informationen lassen sich relativ einfach wieder in ein normales Stereosignal zurückverwandeln. Dazu wird der monaurale Mittenkanal auf Links und Rechts gelegt, der Seitenkanal ebenfalls, allerdings auf Rechts mit 180° Phasendrehung. Zum Verständnis sei angemerkt, dass der Mittenkanal die Funktion L+R darstellt, während der Seitenkanal L-R entspricht.

Da während der Aufnahme in 'normalem' Stereo abgehört werden muss, bietet TotalMix auch die Funktionalität eines M/S-Decoders. Dieser wird in den Settings der Hardware Input- und Software Playback-Kanäle über den Button **MS Proc** aktiviert.

Das M/S-Processing arbeitet je nach Eingangssignal automatisch als M/S-Encoder oder Decoder. Bei Verarbeitung eines normalen Stereosignales erscheinen am Ausgang des M/S-Processings alle Monoanteile im linken Kanal, alle Stereoanteile im rechten Kanal. Das Stereosignal wird also Mitte/Seite encodiert. Dabei ergeben sich einige interessante Einblicke in die Mono/Stereo-Inhalte moderner Musikproduktionen. Außerdem erlaubt es eine ganze Reihe von Eingriffsmöglichkeiten in die Stereobasis, da sich die Stereoanteile des Eingangssignals nun einfachst manipulieren lassen, indem der Seitenkanal mit Low Cut, Expander, Compressor oder Delay bearbeitet wird.

Eine typische Anwendung ist die Manipulation der Basisbreite: über die Pegeländerung des Seitenkanals lässt sich die Stereobreite von Mono über Stereo bis Extended stufenlos manipulieren.

27.8 Programmstartoptionen (nur Windows)

TotalMix FX unterstützt unter Windows auch Kommandozeilenoptionen. Das Anhängen des Dateinamens eines Workspaces lädt diesen. Beispiel: *TotalMixFX.exe Pfad\startworkspace.tmws*. Für ein automatisiertes Laden kann mittels des Parameters /nc der Bestätigungsdialog vom Laden des Workspace unterdrückt werden.

28. MIDI Remote Control

28.1 Übersicht

TotalMix ist per MIDI fernsteuerbar. Es ist zum weit verbreiteten Mackie Control Protokoll kompatibel, kann also mit allen diesen Standard unterstützenden Hardware Controllern benutzt werden. Beispiele sind die Mackie Control, Tascam US-2400, und Behringer BCF 2000.

Zusätzlich lässt sich der als *Main Out* definierte Hardware Output über den Standard **Control Change Volume** auf **MIDI Kanal 1** kontrollieren. Damit ist die wichtigste Lautstärkeeinstellung des Fireface von nahezu jedem mit MIDI versehenen Hardwaregerät kontrollierbar.

MIDI Remote Control arbeitet immer im Modus *View Submix*, auch wenn in TotalMix FX die View Option *Free* aktiv ist.

28.2 Mapping

TotalMix unterstützt die folgenden Mackie Control Elemente*:

Element: Bedeutung in TotalMix:

Channel faders 1 – 8 volume

Master fader Main Out channel fader

V-Pots 1 – 8 pan

pressing V-Pot knobs pan = center

CHANNEL LEFT or REWIND move one channel left
CHANNEL RIGHT or FAST FORWARD move one channel right
BANK LEFT or ARROW LEFT move eight channels left
BANK RIGHT or ARROW RIGHT move eight channels right

ARROW UP or Assignable1/PAGE+ move one row up
ARROW DOWN or Assignable2/PAGE- move one row down

EQ Master Mute
PLUGINS/INSERT Master Solo
STOP Dim Main Out

PLAY Talkback
PAN Mono Main Out

FLIP Speaker B
DYN/INSTRUMENT TrimGains
MUTE Ch. 1 – 8 Mute
SOLO Ch. 1 – 8 Solo
SELECT Ch. 1 – 8 Select

REC Ch. 1 – 8 select output bus (Submix)

RECORD Recall

F1 - F8 load Snapshot 1 - 8 F9 select Main Out F10 - F12 select Cue Phones 1 - 3

*Getestet mit Behringer BCF2000 Firmware v1.07 in Mackie Control Cubase Emulation, und mit Mackie Control unter Mac OS X.

28.3 Setup

Nach öffnen des Preferences Dialogs (Menü Options oder F3) ist der MIDI Input und MIDI Output Port, an denen der Hardware Controller angeschlossen ist, auszuwählen.

Wenn keine Rückmeldungen benötigt werden ist NONE als MIDI Output auszuwählen.

Im Menü Options auf Enable MIDI Control klicken, so dass der Eintrag einen Haken erhält.

28.4 Betrieb

Die unter Mackie MIDI-Kontrolle stehenden Kanäle werden durch einen Farbwechsel des Namensfeldes von schwarz nach braun kenntlich gemacht.

Der 8-Fader Block ist horizontal und vertikal zu bewegen, in Schritten von einem oder acht Kanälen.

Im Modus Submix View kann das aktuelle Routingziel (Hardware Output) mittels REC Ch. 1-8 selektiert werden. Dies entspricht der Selektion eines anderen Ausgangskanals per Mausklick in der untersten Reihe bei aktiver Submix View. Während des MIDI-Betriebs ist es aber nicht notwendig zunächst zur dritten Reihe zu springen. Daher ist es auch im MIDI-Betrieb sehr einfach das Routing zu ändern.

Full LC Display Support: Diese Option in den Preferences (F3) aktiviert vollständigen Mackie Control LCD Support mit acht Kanalnamen und acht Volume/Pan Werten. Ist Full LC Display Support deaktiviert wird eine Kurzinfo über den ersten Fader des Achterblocks (Kanal und Reihe) gesendet. Diese Kurzinfo erscheint auch auf der LED-Anzeige des Behringer BCF2000.

Disable MIDI in Background (Menü Options, Settings) deaktiviert die externe MIDI Kontrolle sobald eine andere Applikation im Vordergrund ist, oder wenn TotalMix minimiert wurde. Damit steuert der Hardware Controller nur die DAW Applikation, außer TotalMix wird in den Vordergrund geholt. Oftmals kann auch die DAW Applikation 'im Hintergrund inaktiv' konfiguriert werden. Dann steuert der Hardware Controller automatisch die Audio Software oder TotalMix, wenn zwischen diesen gewechselt wird.

TotalMix unterstützt auch den neunten Fader der Mackie Control. Dieser Fader (bezeichnet mit Master) kontrolliert den Hardware Output der als *Main Out* in der Control Room Sektion konfiguriert wurde.

Extender Support (Settings, Reiter MIDI) ermöglicht eine Nutzung der speziellen Extender Mixer, aber auch eine Hinzufügung jeglicher anderer Mackie-kompatibler Remote. Das Setzen der Main Remote als Nummer 2 sowie des Extender als Nummer 1 platziert den Extender auf die linke Seite. Bei Nutzung dieser Funktion werden die Remotes als ein Block angezeigt und synchron über die Kanäle bewegt.

28.5 MIDI Control

Der als *Main Out* definierte Hardware Output lässt sich über den Standard **Control Change Volume** auf **MIDI Kanal 1** kontrollieren. Damit ist die wichtigste Lautstärkeeinstellung des Fireface von nahezu jedem mit MIDI versehenen Hardwaregerät kontrollierbar.

Selbst wenn man keine Fader oder Pans fernsteuern will, sind einige Schalter in 'Hardware' doch sehr wünschenswert. Zum Beispiel *Talkback* und *Dim*, oder die Monitoring Option *Cue* (Abhören der Phones Submixes). Um diese Knöpfe zu kontrollieren ist glücklicherweise gar kein Mackie Control kompatibles Gerät notwendig, da sie von simplen Note On/Off Befehlen über MIDI Kanal 1 gesteuert werden.

Die jeweiligen Noten sind (Hex / Dezimal / Taste):

Dim: 5D / 93 / A 6 Mono: 2A / 42 / #F 2 Talkback: 5E / 94 / #A 6 Recall: 5F / 95 / H 6 Speaker B: 32 / 50 / D3

Cue Main Out: 3E / 62 / D 4 Cue Phones 1: 3F / 63 / #D 4 Cue Phones 2: 40 / 64 / E 4 Cue Phones 3: 41 / 65 / F 4 Cue Phones 4: 42 / 66 / #F 4

Snapshot 1: 36 / 54 / #F 3 Snapshot 2: 37 / 55 / G 3 Snapshot 3: 38 / 56 / #G 3 Snapshot 4: 39 / 57 / A 3 Snapshot 5: 3A / 58 / #A 3 Snapshot 6: 3B / 59 / H 3 Snapshot 7: 3C / 60 / C 4 Snapshot 8: 3D / 61 / #C 4

Trim Gains: 2D / 45 / A 2 Master Mute: 2C / 44 / #G 2 Master Solo: 2B / 43 / G 2

Darüber hinaus erlaubt TotalMix eine Steuerung aller Fader aller drei Reihen über simple **Control Change** Befehle.

Das Format für die Control-Change-Befehle ist:

Bx yy zz

x = MIDI channel yy = control number zz = value

Die erste Reihe in TotalMix wird adressiert über MIDI Kanäle 1 bis 4, Reihe 2 über Kanäle 5 bis 8 und Reihe 3 über Kanäle 9 bis 12.

Benutzt werden 16 Controller-Nummern, und zwar die Nummern 102 bis 117 (= hex 66 bis 75). Mit diesen 16 Controllern (= Fadern) und jeweils 4 MIDI-Kanälen pro Reihe lassen sich bis zu 64 Fader pro Reihe adressieren (wie es bei der HDSPe MADI erforderlich ist).

Anwendungsbeispiele zum Senden von MIDI-Befehlszeilen:

- Input 1 auf 0 dB setzen: B0 66 68
- Input 17 auf maximale Absenkung setzen: B1 66 0
- Playback 1 auf Maximum setzen: B4 66 7F
- Output 16 auf 0 dB setzen: B8 75 68

<u>Hinweis</u>: Das Senden von MIDI Strings erfordert die Eingabe des MIDI-Kanals nach Programmiererlogik, beginnend bei 0 für Kanal 1 und endend bei 15 für Kanal 16.

Weitere Funktionen:

- Trim Gains On: BC 66 xx (BC = MIDI Kanal 13, xx = beliebiger Wert)
- Trim Gains Off: BC 66 xx oder Submix selektieren

Selektion Submix (Fader) dritte Reihe:

- Kanal 1/2: BC 68/69 xx- Kanal 3/4: BC 6A/6B xx

etc.

Input Gain Control ist über CC9 möglich, der Wertebereich entspricht dem Gain (bis 65). Der MIDI-Kanal bestimmt den beeinflussten Kanal, von 1 bis 16 (Fireface 802: 9 bis 12). Damit dies funktioniert muss *Enable MIDI Control* im Menü Options von TotalMix FX aktiviert sein.

Auch die **Reverb** und **Echo User Presets** lassen sich per MIDI CC laden: B2 0C nn für Reverb Preset 1 bis 16, B3 0C nn für Echo Preset 1 bis 16

28.6 Stand-Alone MIDI Control

Ist das Fireface 802 nicht mit einem Computer verbunden kann es direkt per MIDI kontrolliert werden. Der Menüeintrag *Options / Enable Stand-Alone MIDI* aktiviert die MIDI-Steuerung im rechnerlosen Betrieb. Der aktuelle Zustand der Option wird im Gerät automatisch gespeichert.

<u>Hinweis</u>: Wenn nicht benötigt sollte der Stand-Alone MIDI Betrieb nicht aktiv sein, da das Gerät sonst direkt nach dem Einschalten auf MIDI-Noten reagiert und auch selber diverse ausgibt.

Die Ansteuerung erfolgt sowohl über das **Mackie Control Protokoll** als auch einige **Standard** MIDI-Funktionen (siehe unten). Im Stand-Alone Modus stehen nicht alle von TotalMix bekannten Merkmale zur Verfügung, da es sich bei einigen nicht um Hardware-, sondern Softwarefunktionen handelt. Funktionen wie *Talkback*, *Mono*, *Solo*, *relatives* Ganging der Fader, *Monitor Main* und *Monitor Phones* werden aufwändig in Software realisiert, und stehen daher Stand-Alone nicht zur Verfügung.

Die meisten und wichtigsten Funktionen für eine Kontrolle des Fireface 802 sind aber in Hardware vorhanden, und daher auch Stand-Alone verfügbar:

- Alle Fader und Pans der ersten und dritten Reihe
- Mute des Eingangssignals pro Kanal
- Ganging per Select
- Auswahl des Routingziels, also des aktuellen SubMix
- Rücksendung von LED- und Displaydaten zum MIDI Controller

Die zweite Reihe (Software Playback) wird übersprungen. Das Fireface 802 sendet Displaydaten als Kurzinfo, so dass eine Navigation innerhalb der Reihen und Spalten problemlos möglich ist. Auch andere Daten wie PAN und diverse Status-LEDs werden unterstützt. Kanalnamen, Pegeldaten und Faderwerte werden nicht gesendet.

Das Gerät arbeitet Stand-Alone grundsätzlich im Modus **View Submix**. Nur so ist es möglich das Routingziel zu ändern, und mehrere Mixdowns/Submixe schnell und einfach einzustellen. Wird das aktuelle TotalMix Setup per 'Store current State into Device' in das Fireface übertragen, ist damit auch der aktuell gewählte Submix-Output in der Hardware für Stand-Alone MIDI Remote voreingestellt.

Mackie Control Protokoll

Der Stand-Alone Betrieb unterstützt die folgenden Mackie Control Elemente*:

*Getestet mit Behringer BCF2000 Firmware v1.07 in Mackie Control Cubase Emulation

Element:

Bedeutung im Fireface:

Channel faders 1 – 8 V-Pots 1 – 8

pressing V-Pot knobs

CHANNEL LEFT or REWIND
CHANNEL RIGHT or FAST FORWARD
BANK LEFT or ARROW LEFT
BANK RIGHT or ARROW RIGHT
ARROW UP or Assignable1/PAGE+
ARROW DOWN or Assignable2/PAGE-

STOP

EQ MUTE Ch. 1 – 8 SELECT Ch. 1 – 8 REC Ch. 1 – 8

F1 - F6

volume pan

pan = center

move one channel left move one channel right move eight channels left move eight channels right move one row up

move one row up move one row down

Dim Main Out

Master Mute

Mute Select

select output bus (current submix)

load Setup 1 - 6

Zusätzlich stehen folgende Funktionen auch im Stand-Alone Modus per simpler MIDI-Note auf MIDI-Kanal 1 bereit:

Dim: 5D / 93 / A 6

Setup 1: 36 / 54 / #F 3 Setup 2: 37 / 55 / G 3 Setup 3: 38 / 56 / #G 3 Setup 4: 39 / 57 / A 3 Setup 5: 3A / 58 / #A 3 Setup 6: 3B / 59 / H 3

Das Laden der im Gerät abgelegten Setups ermöglicht die blitzschnelle Umkonfiguration des 802. Damit kann auf Tastendruck jeglicher Stand-Alone Betriebszustand aktiviert werden.

28.7 Loopback Detection

Das Mackie Control Protokoll verlangt eine Rücksendung der empfangenen Daten, und zwar zurück zum Hardware Controller. Daher wird TotalMix in den meisten Fällen mit MIDI Input und MIDI Output gleichzeitig genutzt. Leider führt der kleinste Fehler bei einer solchen Verkabelung schnell zu einer MIDI Rückkopplung, die dann den Computer (die CPU) komplett blockiert.

Um das Einfrieren des Computers in einem solchen Fall zu verhindern, sendet TotalMix alle halbe Sekunde eine spezielle MIDI Note an den MIDI-Ausgang. Sobald TotalMix diese am Eingang detektiert wird MIDI sofort abgeschaltet. Nach Beseitigung der Rückkopplung ist der Haken bei Options / Enable MIDI Control wieder zu setzen um TotalMix MIDI zu reaktivieren.

28.8. OSC (Open Sound Control)

Neben einfachen MIDI Noten, dem Mackie Protocol und Control Change Commands bietet TotalMix FX auch eine Fernsteuerung über Open Sound Control, OSC. Details und Benutzung sind in Kapitel 25.8.3 erläutert.

Eine OSC Befehlsübersicht (Implementation Chart) ist auf der RME Website verfügbar:

http://www.rme-audio.de/downloads/osc table totalmix new.zip

RME bietet auch eine kostenlose iPad-Vorlage für die iOS-App TouchOSC (von Hexler, erhältlich im Apple App-Store):

http://www.rme-audio.de/downloads/tosc tm ipad template.zip

Das RME Forum enthält eine Fülle weiterer Informationen, weitere Vorlagen (iPhone...) und zahlreiche nützliche Berichte von Anwendern.

29. DAW Mode

Anwender die ausschließlich mit ihrer DAW Software arbeiten und TotalMix FX für zusätzliche Routingaufgaben nicht nutzen wollen, benötigen einen Weg sicherzustellen, dass TotalMix FX das DAW Routing nicht beeinflusst. Auch wenn *Reset Mix* dies ermöglicht, sind solche Anwender mit einer einfacheren Oberfläche, die ein gerades 1:1 Routing aller I/Os garantiert, und ansonsten nur die notwendigen Hardware-Kontrollelemente (Gain, +48V, Instrument...) des Interfaces zur Verfügung stellt, besser bedient (das Live-Monitoring übernimmt die DAW Software).

Für solche Fälle enthält TotalMix FX einen alternativen Betriebsmodus. Es kann in den sogenannten *DAW Modus* schalten. Diese vereinfachte Oberfläche ist für jeden der das gesamte Monitoring und Routing innerhalb der DAW erledigt. Der DAW Modus startet TM FX in eine Light-Version mit nur zwei Reihen, keiner Playback-Reihe, und keinen Mix-Fadern in der Eingangs-Reihe. Das Routing ist ausschließlich 1:1. Nur die Hardware-Kontrollelemente (wenn vorhanden) und die Hardware Ausgangspegel-Fader sind verfügbar.

Um den Modus zu wechseln klickt man im Menü Options, auf *Operational Mode*. Zur Auswahl stehen *Full Mode* (Default, Mixer aktiv, alle Routingoptionen verfügbar), und *Digital Audio Workstation Mode* (1:1 Playback Routing, kein Mix der Eingänge).

Einige nützliche Pro-Funktionen sind aber auch im TotalMix FX DAW Modus verfügbar:

- ➤ Talkback, External Input
- > Phones-Zuweisung und Kontrolle mit Talkback
- Speaker A / B
- > Alle FX (EQ, Dynamics, Echo, Reverb)
- Mute und Solo
- Cue / PFL

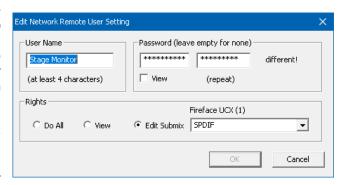
30. TotalMix Remote

TotalMix Remote ist eine Fernbedienung für TotalMix FX v1.50 und höher, um den Hardware-Mixer und Effekte in RME-Audio-Interfaces zu steuern. TotalMix Remote spiegelt den aktuellen Status des Host-Systems auf dem iPad und Windows / Mac-Computern - den gesamten Mischer, das komplette Routing, alle FX-Einstellungen und selbst die Pegelanzeigen - und alles in Echtzeit. TotalMix Remote unterstützt bis zu drei Hosts mit jeweils mehreren Interfaces, so dass Apples beliebtes iPad- und Windows / Mac-Computer alle Mixer- und FX-Einstellungen aus der Ferne über Ethernet und WLAN anpassen können.

Unterstützte Hardware

TotalMix Remote kommuniziert mit TotalMix FX 1.50 oder höher. Jede RME-Hardware, die mit TotalMix FX verwendet werden kann, wird automatisch unterstützt.

Schnellstart


Gehen Sie auf dem Host, also dem Rechner mit angeschlossenem Audio-Interface, in TotalMix FX zum Menü *Options, Network Remote Settings*. Klicken Sie auf *Enable TotalMix Remote Server*, um diesen Dienst zu starten. Unter Windows wird eine Firewall-Warnung angezeigt. Erlauben Sie TotalMix FX oder es wird nicht funktionieren. Dieser Dialog zeigt auch die IP des Hosts, wie z.B. 192.168.1.45.

Stellen Sie sicher, dass sich Host und Remote-Computer / iPad im selben Netzwerk befinden. Starten Sie TotalMix Remote auf dem Remote-Computer / iPad (nicht auf dem Host!). Tippen Sie auf dem iPad auf das Zahnradsymbol in der oberen rechten Ecke und dann auf Host Connection Settings. Unter Windows / Mac wird der Dialog entweder automatisch angezeigt, oder kann über den Dialog Search Connected Hosts aufgerufen werden. Geben Sie die IP-Adresse des Hosts (wie 192.168.1.45) in das IP-Feld von Host Connection 1 ein, und stellen Sie sicher, dass sie aktiviert ist. Der Port ist standardmäßig auf 7009 eingestellt und muss normalerweise nicht geändert werden. Falls dieser Port unerwartet besetzt ist, wird eine Warnmeldung ausgegeben. Wählen Sie dann einen anderen Port.

Tippen Sie oben auf Done oder klicken Sie auf OK. In der Mixer-Ansicht sollte der Status innerhalb weniger Sekunden von Offline zu Connected wechseln.

Über die Schaltfläche Add besteht Zugriff auf das detailliert konfigurierbare Benutzer-Management. Hier lassen sich Nutzer definieren, mit und ohne Passwort, und diesen die Rechte nur Ansehen, Verstellen eines bestimmten Submixes, oder voller Zugriff zuweisen. Wird TotalMix FX beispielsweise als Monitorcontroller für alle Bandmitglieder benutzt, lässt sich so verhindern, dass der Bassist den Monitormix des Gitarristen verändert. Oder sich der Drummer zu laut macht. Etc.

Tips

Die Fernbedienungen haben die Option *Sync Channel Layouts* als Default aktiviert (in *Preferences*). Diese Option überträgt die Layout Presets und den aktuellen Status des Channel Layouts von Host zu Remote. Abgesehen vom Status der Kanalbreite macht diese Option eine gespiegelte Konfiguration sehr einfach. Wenn Sie die Fernbedienung jedoch als individuelle Einrichtung verwenden, deaktivieren Sie diese Option, um unabhängige Layout-Vorgaben für die Remote zu erhalten.

Einschränkungen

- Mixer View & GUI. Wenn der Remote-Computer / das iPad verbunden ist, erhält er sofort die kompletten Routing- und FX-Einstellungen des Hosts, einschließlich Mono- und Stereokanälen, aber nicht die GUI-Einstellungen des Hosts, wie geöffnete/geschlossene Settings/EQ/Dynamics oder FX-Panel, 2-Row oder 3-Row Modus und Kanalbreite. Kanalbreitenzustände können wie üblich per Snapshot und vollständig als Workspace lokal auf dem Remote-Computer gespeichert werden. Sie müssen nach dem Laden eines Workspace auf dem Host manuell geladen werden, falls eine 100% identische Ansicht benötigt wird.
- Workspaces. Die Fernbedienung zeigt die auf dem Host gespeicherten Quick Workspaces (Hotkey W unter Windows / Mac) an, und ermöglicht das Remote-Laden dieser Arbeitsbereiche. Es ist nicht möglich, komplette Workspaces mit Mischer-Status von oder auf dem Remote-Gerät zu speichern. Die lokal gespeicherten Arbeitsbereiche enthalten nur GUI-Informationen (Kanalstatus: Wide / Narrow, Kanallayouts, Fenstergröße und -position) und weitere lokale Einstellungen, um personalisierte Ansichten auf dem Remotecomputer unabhängig von der Ansicht auf dem Host zu ermöglichen.
- Echtzeitverhalten. Kann leiden, wenn das Netzwerk überlastet ist oder der WLAN-Empfang nicht ausreicht. Level Meter stottern dann und Fader bewegen sich nicht reibungslos.
- Hintergrundbetrieb auf dem iPad ist nicht möglich. Dies sollte kein Problem sein, da die Remote im Hintergrund nichts tun muss, und bei Aufruf sehr schnell wieder verbunden und synchronisiert wird.
- Status. Wird in der oberen rechten Ecke (Offline oder Connected) oder in der Titelleiste von Mac / Windows angezeigt.

Downloads

Remote-Windows

http://www.rme-audio.de/download/tmfx win remote.zip

Remote-Mac

http://www.rme-audio.de/download/tmfx mac remote.zip

iPad

Im Apple App Store nach "TotalMix Remote" suchen. Diese App ist kostenlos.

Bedienungsanleitung

Fireface 802 FS

Description Class Compliant Modus

31. Allgemeines

Das Fireface 802 arbeitet in drei verschiedenen Modi: **Treiber-basiertes USB 2**, **Stand-Alone** Modus, und **Class Compliant** Modus. Dieser Begriff beschreibt einen Standard, der nativ von Betriebssystemen wie Windows, Mac OS X und Linux unterstützt wird. Es sind dann keine weiteren Treiber erforderlich, ein Gerät wird direkt erkannt wenn die CC-Firmware geladen wurde. Die dabei 'nativ' unterstützten Merkmale eines Fireface 802 FS sind, verglichen mit den von den RME-Treibern bereitgestellten, eingeschränkt. So gibt es gibt weder Hardware-Settings, noch einen (Total-) Mixer oder Einstellungen für die Effekte. Auf dem iPad (iOS) ist das 802 FS aber vollständig über die optionale App *TotalMix FX for iPad* kontrollierbar.

Die Umschaltung in den CC-Modus geschieht über den versenkten Schalter auf der Rückseite.

Weder die Windows- noch die Mac-Unterstützung des Class Compliant Modus ist wirklich relevant, schließlich gibt es für diese Betriebssysteme ausgereifte RME-Treiber, die ALLE Features zur Verfügung stellen, bei gleichzeitig niedrigster Latenz. Der eigentliche Grund für die Implementierung dieses Modus war die Nutzung des 802 als **Apple iPad**® Hardware-Frontend.

Das 802 stattet iPad und iPhone mit professionellen analogen I/Os aus. Hochwertigste Mikrofon-Preamps mit EQ, Dynamics, selbst AutoSet, dazu professionelle symmetrische Line-Ausgänge und zwei Hi-Power Kopfhörerausgänge, die auch mit hochohmigen Phones überzeugen. Plus Pegel- und Gain-Anpassungen, AES und ADAT I/O, Hall, Echo und Zero Latency Monitoring. Dies alles digital über USB, also in uneingeschränkter Qualität mit bis zu 192 kHz und 24 Bit. Und natürlich ein Sysex-fähiger MIDI I/O.

TotalMix FX for iPad bietet auch volle Unterstützung für die optionale ARC USB, eine Advanced Remote Control für das Fireface 802 FS, die Betrieb und Bedienung der iPad-DAW leichter und komfortabler gestaltet.

32. Hardwareanforderungen

- > Fireface 802 im Class Compliant Modus
- > Beliebiges Apple iPad mit iOS 9 oder höher
- > iPhone mit iOS 9 oder höher
- Apple iPad Camera Connection Kit bzw. Lightning zu USB Adapter
- iPad Pro erfordert keinen aktiven Adapter, nur ein einfaches USB-C zu USB-B Kabel

33. Inbetriebnahme

Im normalen USB-Modus schaltet das Fireface 802 FS **nicht** automatisch in den CC-Modus sobald ein iPad oder iPhone angeschlossen wird. Stattdessen ist der Modus USB 2 aktiv, und auf dem iPhone/iPad erscheint die Meldung dass das Gerät nicht unterstützt wird. Der CC-Modus ist immer manuell zu aktivieren!

Aktivieren des Class Compliant Modus

USB-Kabel vom Fireface 802 FS entfernen und versenkten Schalter CC Mode auf der Rückseite drücken. Auf der Front leuchtet die CC LED auf.

Mittels *CC-Routing* lassen sich zwei verschiedene Routings der Playbacksignale aktivieren. Siehe Kapitel 36.

USB-Kabel mit 802 und dem Camera Connection Kit verbinden. iPad/iPhone starten und Camera Connection Kit in das iPad/iPhone einstecken. Eine Audio-Wiedergabe von iTunes erfolgt nun automatisch über das 802, auf den analogen Ausgängen 1/2.

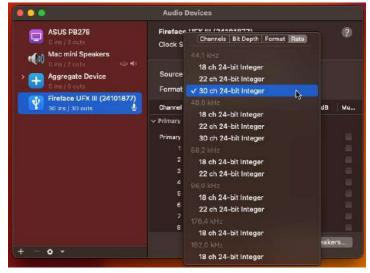
Apps die Core MIDI unterstützen bieten einen Auswahldialog zur Auswahl des MIDI-Ports des 802.

33.1 Nützliche Hinweise

Befindet sich das 802 beim Verbinden nicht im CC-Modus erkennt das iPhone/iPad ein inkompatibles USB-Gerät. Es erscheint die Meldung 'Gerät kann nicht benutzt werden – Das angeschlossene USB-Gerät wird nicht unterstützt'.

Kein Ton: falsche Output Gain Settings oder falsches Routing, siehe Kapitel 34. Bitte beachten Sie, dass der Lautstärke-Einsteller des iPhone/iPad im USB-Betrieb keine Funktion hat.

Geht das 802 nicht in den Host Modus: Connection Kit abziehen und wieder anstecken.


Seit 2016 bietet Apple eine weitere Version des Lightning auf USB Adapters an, die sich *Lightning auf USB 3 Kamera-Adapter* nennt. Er besitzt einen zusätzlichen Lightning-Port als Stromversorgungsanschluss, der das iPhone/iPad auch während des Betriebs mit dem Fireface 802 lädt.

Das iPad Pro mit seiner USB-C Buchse arbeitet als normaler USB Host. Daher ist kein Adapter notwendig, sondern nur ein passendes Kabel (USB-C zu USB-B).

33.2 Class Compliant unter Windows und Mac OS X

Der USB 2 Class Compliant Modus des Fireface 802 FS (18-Kanal Playback) ist kompatibel zu Windows 11.

macOS lässt sich im Class Compliant Mode nutzen, auch wenn dies ohne Settingsdialog und TotalMix FX wenig Sinn macht. Zumindest lassen sich die verfügbaren CC-Modi über das Audio MIDI Setup anzeigen. Das Bild rechts zeigt die verfügbaren Modi unter macOS mit USB 2.

iOS/iPadOS

Diese Modi existieren zwar auch beim Anschluß eines iPad, können aber von iOS und iPadOS nicht frei genutzt und zugewiesen werden. Es liegt alleine bei der Anwendung ob bestimmte Samplefrequenzen und Kanalzahlen verfügbar sind. Meist sind iPad DAWs auf 24 Kanäle beschränkt, die z.B. bei *Cubasis* auch bei 96 kHz zur Verfügung stehen (22 Kanäle mit USB 2, siehe Bild oben). Stereo-Player wie *Neutron* nutzen alle Samplefrequenzen des Fireface 802. Eine gemischte Playlist mit Musik von 44,1 kHz bis 192 kHz wird von Neutron problemlos mit den originalen Samplefrequenzen abgespielt.

34. Unterstützte Ein- und Ausgänge

Unter macOS funktionieren alle Modi, abhängig von der Auswahl im Audio MIDI Setup.

Am iPhone/iPad funktioniert bei Mono-Apps Eingang 1, bei Stereo-Apps Eingang 1/2 (also Mikrofon/Line, sowohl Dual-Mono als auch Stereo), und bis zu 8 Eingänge bei Apps wie *MultiTrack DAW* und *Music Studio. Garage Band* unterstützt alle Eingänge, aber nur zwei gleichzeitig. *Auria* und *Cubasis* können 24 Eingänge gleichzeitig aufnehmen.

Bei der Wiedergabe arbeiten die rückseitigen analogen Ausgänge 1 und 2, oder auch mehr, wenn die jeweilige App das unterstützt. Das Fireface 802 FS kann wahlweise die Playback-Kanäle 1/2 auf die Ausgänge 9/10 und 11/12 kopieren, für vereinfachtes Monitoring (CC-Routing *Phones*, aktivierbar über die optionale ARC USB).

Die Konfiguration des 802 erfolgt idealerweise über die App *TotalMix FX for iPad*, alternativ über das Laden von Setups. Diese werden bei Betrieb am PC/Mac über TotalMix FX in das Gerät geschrieben, und beinhalten auch den Clock Modus Master oder AutoSync, sowie die Samplefrequenz. Bei Nutzung der RME iPad App wird das Routing *Phones* automatisch deaktiviert, da das gesamte Routing nun von der App kontrolliert wird.

Mit externer Clock wird das Fireface 802 FS (und das iPhone/iPad) bei Vorhandensein eines gültigen digitalen Eingangssignals zu diesem synchronisiert. Dies führt bei einer falschen Samplefrequenz zu schweren Audiostörungen. Ohne ein AES, ADAT oder SPDIF-Eingangssignal bleibt das Fireface 802 FS im internen Clock-Modus. Die aktuelle Samplefrequenz wird grundsätzlich von Mac OS X oder iOS (der aktuellen App) eingestellt.

Zwar senden und empfangen die MIDI I/O des Fireface 802 Sysex-Daten, leider sind aber viele Apps dazu nicht in der Lage. Zur Prüfung der Sysex-Funktion eignet sich die App *Midi Tool Box*.

35. Bedienung am Gerät

Die Bedienung am Gerät entspricht der unter Windows und Mac. Sie beschränkt sich mangels weiterer Bedienelemente auf Gains und Volume. Weitere Funktionen ermöglicht die optionale ARC USB, angeschlossen am Remote-Port auf der Rückseite. Informationen dazu enthält Kapitel 23.2, Einstellungen am Gerät.

36. Audio Routing und Processing

Im Class Compliant Modus besitzt das 802 FS einen dem normalen Betrieb mit TotalMix FX sehr ähnlichen Aufbau. Mit zwei wesentlichen Unterschieden:

- ➤ Es gibt keine zweite Reihe (Playback Outputs), und damit auch kein änderbares Routing oder Mischen der Wiedergabekanäle*. Diese sind den Hardware-Outputs immer entweder 1:1 (CC-Routing All Ch.) zugewiesen, oder mit einem festen Zusatzrouting von 1/2 auf 9/10 und 11/12 (CC-Routing Phones), ohne welches die Kopfhörer nicht nutzbar wären.
- > Die Eingangseffekte EQ/Dyn befinden sich immer im Aufnahmeweg.

Das Fireface 802 lässt sich per TotalMix FX unter Windows/Mac über das Ablegen von bis zu 6 Konfigurationen im Setup-Speicher des Gerätes für den CC und Stand-Alone Betrieb vorkonfigurieren, siehe chapter 23.2.

Das Eingangssignal durchläuft sämtliche aktivierten Funktionen des TM FX Eingangskanals, also Settings, EQ und Dynamics, und wird dann zum iPhone/iPad gesendet. Wie auch unter Windows/Mac lässt sich mittels Routing zu den Ausgängen ein direktes Monitoring einstellen. Auch der Send–Regler für Echo/Reverb ist aktiv.

Wie auch bei der Nutzung von TotalMix FX befinden sich die Optionen Stereo Width, MS Proc und Phase L/R NICHT im Aufnahmeweg, sondern nur im Monitorweg. Dies ist leider technisch bedingt und nicht änderbar.

Das Playbacksignal des iPhone/iPad durchläuft alle aktivierten Funktionen des TM FX Hardware Outputs, also Settings, EQ und Dynamics. Dessen Fader stellt den Ausgangspegel ein.

Einstellungen in der Control Room Section werden nicht berücksichtigt! Die Einstellung der Phones-Ausgäng erfolgt explizit über die Ausgangskanäle 9/10 und 11/12!

Beide Modi lassen sich im laufenden Betrieb aktivieren, und beeinflussen einen über die Setups geladenen Mischerzustand nicht, da sie nur das Playback-Routing betreffen.

^{*}Gilt nicht bei Nutzung des iPad und der optionalen App TotalMix FX for iPad.

Bedienungsanleitung

Fireface 802 FS

Technische Referenz

37. Technische Daten

37.1 Analoger Teil

AD, Line In 1-8, Rückseite

- Eingang: 6,3 mm Stereoklinke, servosymmetrisch
- Rauschabstand (SNR) @:LoGain: 116 dB (AES17), 118 dBA
- Rauschabstand (SNR) @:+4 dBu: 115 dB (AES17), 117 dBA
- Frequenzgang @ 44.1 kHz, -0,1 dB: 8,9 Hz 20,4 kHz
- Frequenzgang @ 96 kHz, -0,5 dB: 4,3 Hz 45,2 kHz
- Frequenzgang @ 192 kHz, -1 dB: 3 Hz 89 kHz
- Filter: Short Delay Sharp, 5 / 5 / 6 Samples Latenz
- THD @ -1 dBFS: < -120 dB, < 0,0001 %
- THD+N @ -1 dBFS: < -110 dB, < 0,00032 %
- Übersprechdämpfung: > 110 dB
- Maximaler Eingangspegel: +19 dBu
- Eingang: 6,3 mm Stereoklinke, elektronisch symmetriert
- Eingangsimpedanz @ 1 kHz: 10 kOhm unsymmetrisch, 10,6 kOhm symmetrisch
- Eingangsempfindlichkeit schaltbar Lo Gain und +4 dBu
- Eingangspegel für 0 dBFS @ +19 dBu: +19 dBu
- Eingangspegel für 0 dBFS @ +4 dBu: +13 dBu
- Variabler Gain: 0 bis +12 dB
- Minimaler Eingangspegel f
 ür 0 dBFS: +1 dBu, -1,2 dBV

Mikrophon In 9-12, Frontseite

Wie AD, aber:

- Eingang: XLR, elektronisch symmetriert
- Eingangsimpedanz: 3,4 kOhm
- Rauschabstand (SNR) @ Gain + 10 dB: 113 dB RMS unbewertet, 116 dBA
- Regelbereich Gain: 54 dB
- Maximaler Eingangspegel, Gain +6 dB: +10 dBu
- Maximaler Eingangspegel, Gain +60 dB: -44 dBu
- CLIP LED: 0 dBFS
- SIG LED: -42 dBFS

Instrument In 9-12, Frontseite

Wie AD, aber:

- Eingang: 6,3 mm Monoklinke unsymmetrisch
- Eingangsimpedanz: 1 MOhm
- Rauschabstand (SNR): 113 dB RMS unbewertet, 116 dBA
- Maximaler Eingangspegel, Gain +6 dB: +21 dBu
- Maximaler Eingangspegel, Gain +60 dB: -33 dBu
- Frequenzgang @ 44.1 kHz, -0,5 dB: 2,5 Hz 20,5 kHz
- Frequenzgang @ 96 kHz, -0,5 dB: 2,5 Hz 25 kHz
- Frequenzgang @ 192 kHz, -1 dB:1,7 Hz 36 kHz

DA - Stereo Monitor Ausgang Phones (9-12)

Wie DA, aber:

- Ausgang: 2 x 6,3 mm Stereoklinke, unsymmetrisch
- maximaler Ausgangspegel bei 0 dBFS: +17 dBu
- Max Ausgangsleistung pro Kanal, 32 Ohm Last, 0,1% THD: 210 mW (2,5 Veff, +10 dBu)
- Rauschabstand (SNR): 116 dB (AES17), 118 dBA
- Ausgangsimpedanz: 2 Ohm

DA. Line Out 1-8. Rückseite

- Ausgang: 6,3 mm Stereoklinke, servosymmetrisch
- Rauschabstand (SNR) @ HiGain: 116,5 dB (AES17), 118.5 dBA
- Rauschabstand (SNR) @ +4 dBu: 116 dB (AES17), 118 dBA
- Rauschabstand (SNR) @ -10 dBV: 107 dB (AES17), 109 dBA
- Frequenzgang @ 44.1 kHz, -0,1 dB: 0 Hz 20,2 kHz
- Frequenzgang @ 96 kHz, -0,5 dB: 0 Hz 44,6 kHz
- Frequenzgang @ 192 kHz, -1 dB: 0 Hz 77,5 kHz
- Filter: Short Delay Sharp, 6 / 6 / 6 Samples Latenz
- THD+N: < -110 dB, < 0,00032 %
- Übersprechdämpfung: > 110 dB
- Ausgangspegel schaltbar Hi Gain, +4 dBu, -10 dBV
- Ausgangspegel bei 0 dBFS @ +19 dBu: +19 dBu
- Ausgangspegel bei 0 dBFS @ +13 dBu: +13 dBu
- Ausgangspegel bei 0 dBFS @ +4 dBu: +2 dBV (+4,2 dBu)
- Ausgangsimpedanz: 75 Ohm

37.2 MIDI

- 1 x MIDI I/O über 5-pol DIN Buchsen
- Galvanische Trennung über Optokoppler am Eingang
- · Hi-Speed Mode mit Jitter und Reaktionszeit typisch unter 1 ms
- · Getrennte 128 Byte FIFOs für Ein- und Ausgang

37.3 Digitaler Teil

- Clocks: Intern, ADAT In, AES In, SPDIF In, Wordclock In
- Jitterunterdrückung externer Clocks: > 50 dB (> 1 Hz)
- Praktisch kein effektiver Jittereinfluss der Clock auf AD- und DA-Wandlung
- · PLL arbeitet selbst mit mehr als 100 ns Jitter ohne Aussetzer
- Digitale Bitclock-PLL für störungsfreies Varipitch im ADAT-Betrieb
- Unterstützte Samplefrequenzen: 28 kHz bis zu 200 kHz

37.4 Digitale Eingänge

AES/EBU

- 1 x XLR, trafosymmetriert, galvanisch getrennt, nach AES3-1992
- hochempfindliche Eingangsstufe (< 0,3 Vss)
- SPDIF kompatibel (IEC 60958)
- · Akzeptiert Consumer und Professional Format
- Lock Range: 27 kHz 200 kHz
- Jitterunterdrückung: > 50 dB (> 1 Hz)

ADAT Optical

- 2 x TOSLINK, Format nach Alesis-Spezifikation
- Standard: 2 x 8 Kanäle 24 Bit, maximal 48 kHz
- Double Speed (S/MUX): 2 x 4 Kanäle 24 Bit 96 kHz
- Quad Speed (S/MUX4): 2 x 2 Kanäle 24 Bit 192 kHz
- Quad Speed Windows USB: 1 x 2 Kanäle 24 Bit 192 kHz
- Bitclock PLL für perfekte Synchronisation auch im Varispeed-Betrieb
- Lock Range: 31,5 kHz 50 kHz
- Jitterunterdrückung: > 50 dB (> 1 Hz)

SPDIF optical (ADAT1/2)

- 1 x optisch, nach IEC 60958
- Akzeptiert Consumer und Professional Format
- Lock Range: 27 kHz 200 kHz
- Jitterunterdrückung: > 50 dB (> 1 Hz)

Word Clock

- BNC
- Interne Terminierung 75 Ohm schaltbar
- Automatische Double/Quad Speed Detektion und Konvertierung zu Single Speed
- SteadyClock garantiert jitterarme Synchronisation auch im Varispeed-Betrieb
- Unempfindlich gegen DC-Offsets im Netzwerk
- Signal Adaptation Circuit: Signalrefresh durch Zentrierung und Hysterese
- Überspannungsschutz
- Pegelbereich: 1,0 Vss 5,6 Vss
- Lock Range: 27 kHz 200 kHz
- Jitterunterdrückung: > 50 dB (> 1 Hz)

37.5 Digitale Ausgänge

AES/EBU

- 1 x XLR, trafosymmetriert, galvanisch getrennt, nach AES3-1992
- Ausgangsspannung Professional 4,2 Vss, Consumer 2,4 Vss
- Format Professional nach AES3-1992 Amendment 4
- Format Consumer (SPDIF) nach IEC 60958
- Single Wire Mode, Samplefrequenz 28 kHz bis 200 kHz

ADAT

- 2 x TOSLINK
- Standard: 2 x 8 Kanäle 24 Bit, maximal 48 kHz
- Double Speed (S/MUX): 2 x 4 Kanäle 24 Bit 96 kHz
- Quad Speed (S/MUX4): 2 x 2 Kanäle 24 Bit 192 kHz
- Quad Speed Windows USB: 1 x 2 Kanäle 24 Bit 192 kHz

SPDIF optical (ADAT2)

- Format Consumer (SPDIF) nach IEC 60958
- Samplefrequenz 28 kHz bis 200 kHz

Word Clock

- BNC
- Maximaler Pegel: 5 Vss
- Pegel bei Terminierung mit 75 Ohm: 4,0 Vss
- Innenwiderstand: 10 Ohm
- Frequenzbereich: 27 kHz 200 kHz

37.6 Allgemeines

- Stromversorgung: Internes Schaltnetzteil, 100 240 V AC, 30 Watt
- Minimaler Leistungsbedarf: 15 Watt
- Typischer Leistungsbedarf: 22 Watt
- Maße mit Rackohren (BxHxT): 483 x 44 x 242 mm
- Maße ohne Rackohren/Bügel (BxHxT): 436 x 44 x 236 mm
- Gewicht: 2,8 kg
- Temperaturbereich: +5° bis zu +50° Celsius
- Relative Luftfeuchtigkeit: < 75%, nicht kondensierend

38. Technischer Hintergrund

38.1 Lock und SyncCheck

Digitale Signale bestehen aus einem Carrier (Träger) und den darin enthaltenen Nutzdaten (z.B. Digital Audio). Wenn ein digitales Signal an einen Eingang angelegt wird, muss sich der Empfänger (Receiver) auf den Takt des Carriers synchronisieren, um die Nutzdaten später störfrei auslesen zu können. Dazu besitzt der Empfänger eine PLL (Phase Locked Loop). Sobald sich der Empfänger auf die exakte Frequenz des hereinkommenden Carriers eingestellt hat ist er 'locked' (verriegelt). Dieser **Lock**-Zustand bleibt auch bei kleineren Schwankungen der Frequenz erhalten, da die PLL als Regelschleife die Frequenz am Empfänger nachführt.

Wird an das Fireface 802 ein ADAT- oder SPDIF-Signal angelegt, beginnt die entsprechende SYNC Eingangs-LED zu blinken. Das Gerät signalisiert LOCK, also ein gültiges, einwandfreies Eingangssignal (ist das Signal auch synchron leuchtet sie konstant, siehe unten).

Leider heißt Lock noch lange nicht, dass das empfangene Signal in korrekter Beziehung zur die Nutzdaten auslesenden Clock steht. Beispiel [1]: Das Fireface steht auf internen 44.1 kHz (Clock Mode Master), und an den Eingang ADAT1 ist ein Mischpult mit ADAT-Ausgang angeschlossen. Die entsprechende LED wird sofort LOCK anzeigen, aber die Samplefrequenz des Mischpultes wird normalerweise im Mischpult selbst erzeugt (ebenfalls Master), und ist damit entweder minimal höher oder niedriger als die interne des Fireface. Ergebnis: Beim Auslesen der Nutzdaten kommt es regelmäßig zu Lesefehlern, die sich als Knackser und Aussetzer bemerkbar machen.

Auch bei der Nutzung mehrerer Eingänge ist ein einfaches LOCK unzureichend. Zwar lässt sich das obige Problem elegant beseitigen, indem das Fireface von Master auf AutoSync umgestellt wird (seine interne Clock ist damit die vom Mischpult gelieferte). Wird aber nun ein weiteres asynchrones Gerät angeschlossen, ergibt sich wiederum eine Abweichung der Samplefrequenz, und damit Knackser und Aussetzer.

Um solche Probleme auch optisch am Gerät anzuzeigen, enthält das Fireface 802 **SyncCheck**. Es prüft alle verwendeten Clocks auf *Synchronität*. Sind diese nicht zueinander synchron (also absolut identisch), blinkt die SYNC LED des asynchronen Eingangs. Sind sie jedoch vollständig synchron leuchtet die LED konstant. Im obigen Beispiel 1 wäre nach Anstecken des Mischpultes sofort aufgefallen, dass die LED ADAT1 blinkt.

In der Praxis erlaubt SyncCheck einen sehr schnellen Überblick über die korrekte Konfiguration aller digitalen Geräte. Damit wird eines der schwierigsten und fehlerträchtigsten Themen der digitalen Studiowelt endlich leicht beherrschbar.

Die gleichen Informationen präsentiert das Fireface auch im Settingsdialog. Im Statusfenster *SyncCheck* wird der Status aller Clocks im Klartext angezeigt (No Lock, Lock, Sync).

38.2 Latenz und Monitoring

Der Begriff **Zero Latency Monitoring** wurde 1998 von RME mit der DIGI96 Serie eingeführt, und beschreibt die Fähigkeit, das Eingangssignal des Rechners am Interface direkt zum Ausgang durchzuschleifen. Seitdem ist die dahinter stehende Idee zu einem der wichtigsten Merkmale modernen Harddisk Recordings geworden. Im Jahre 2000 veröffentlichte RME zwei wegweisende Tech Infos zum Thema *Low Latency Hintergrund*, die bis heute aktuell sind: *Monitoring, ZLM und ASIO*, sowie *Von Puffern und Latenz Jitter*, zu finden auf der RME Website.

Wie Zero ist Zero?

Rein technisch gesehen gibt es kein Zero. Selbst das analoge Durchschleifen ist mit Phasenfehlern behaftet, die einer Verzögerung zwischen Ein- und Ausgang entsprechen. Trotzdem lassen sich Verzögerungen unterhalb bestimmter Werte subjektiv als Null-Latenz betrachten. Das analoge Mischen und Routen gehört dazu, RMEs Zero Latency Monitoring unseres Erachtens auch. Der Begriff beschreibt den digitalen Weg der Audiodaten vom Eingang des Interfaces zum Ausgang. Der digitale Receiver des Fireface 802 verursacht aufgrund unvermeidlicher Pufferung, zusammen mit TotalMix und der Ausgabe über den Transmitter, eine typische Verzögerung von 3 Samples über alles. Das entspricht bei 44.1 kHz etwa 68 µs (0,000068 s), bei 192 kHz noch 15 µs, und gilt für ADAT wie SPDIF gleichermaßen.

Oversampling

Während man die Verzögerung der digitalen Schnittstellen relativ vergessen kann, ist bei Nutzung der analogen Ein- und Ausgänge eine nicht unerhebliche Verzögerung vorhanden. Moderne Chips arbeiten mit 64- oder 128-facher Überabtastung und digitalen Filtern, um die fehlerbehafteten analogen Filter möglichst weit aus dem hörbaren Frequenzbereich zu halten. Dabei entsteht eine Verzögerung von typisch einer Millisekunde. Ein Abspielen und Aufnehmen über DA und AD (Loopback) führt so zu einem Offset der Aufnahme von circa 2 ms.

Low Latency!

Das Fireface 802 benutzt AD- und DA-Wandler mit einem innovativen digitalen Filter, welches eine Verzögerung von nur wenigen Samples verursacht. Mit 5 Samples AD und 6 DA betragen die durch die Wandlung verursachten Verzögerungen nur circa ein Viertel vorheriger Generationen. Die genauen Werte beim Fireface 802 sind:

Samplefrequenz kHz	44,1	48	88.2	96	176,4	192
AD (5 x 1/fs) ms	0,11	0,104				
AD (5 x 1/fs) ms			0,057	0,052		
AD (6 x 1/fs) ms					0,034	0,031
DA (6 x 1/fs) ms	0,136	0,125	0,068	0,063	0,034	0,031

Buffer Size (Latency)

Windows: Mit dieser Option im Settingsdialog für ASIO und WDM die Puffergröße für die Audiodaten festgelegt (siehe auch Kapitel 7).

Mac OS X: Die Puffergröße wird in der jeweiligen Applikation eingestellt. Nur wenige Programme erlauben keine Einstellung. Beispielsweise ist iTunes auf 512 festgelegt.

Allgemein: Bei einer Einstellung von 64 Samples ergibt sich bei 44.1 kHz eine Latenz von 1,5 ms jeweils für Aufnahme und Wiedergabe. Bei einem digitalen Schleifentest ist diese Latenz nicht nachweisbar. Grund: jede Software kennt natürlich die Größe der Puffer, und platziert die neu aufgenommenen Daten an der Stelle, an der sie ohne Latenz gelandet wären.

AD/DA Offset unter ASIO und OS X: ASIO (Windows) und Core Audio (Mac OS X) erlauben die Angabe eines Korrekturfaktors zum Ausgleich von Puffer-unabhängigen Verzögerungen, wie AD-und DA-Wandlung, oder dem unten beschriebenen Safety Buffer. Ein analoger Schleifentest zeigt dann keinen Offset, da das Anwendungsprogramm die Position der aufgezeichneten Daten entsprechend verschiebt. Da in der Praxis fast ausschließlich die analoge Aufnahme / Wiedergabe vorkommt, wurden die Treiber mit einer passenden Offsetangabe versehen.

Im **digitalen** Schleifentest entsteht deshalb ein *negativer* Offset von ungefähr 18 Samples. Da dieser Anwendungsfall aber selten und der Wert sehr klein (< 0,5 ms) ist, und sich der Offset manuell korrigieren lässt, stellt dies kein Problem dar. Zudem kommt auch bei Nutzung der digitalen I/Os im Normalfall irgendwo eine AD- und DA-Wandlung ins Spiel.

<u>Hinweis</u>: Cubase und Nuendo zeigen die vom Treiber gemeldeten Latenzwerte für Aufnahme und Wiedergabe getrennt an. Während diese bei unseren digitalen Karten früher genau der Puffergröße entsprachen (z.B. 3 ms bei 128 Samples), wird beim Fireface jeweils etwas mehr angezeigt – die für die AD/DA-Wandlung benötigte Zeit. Bei der Wiedergabe kommt sogar noch etwas mehr hinzu – siehe Safety Buffer.

Safety Buffer

Ein zusätzlicher kleiner Safety Buffer auf der Wiedergabeseite hat sich als sehr effizient erwiesen. Er kommt daher in allen aktuellen RME-Produkten zum Einsatz. Beim Fireface 802 beträgt dieser in Windows 32 Samples für USB und 64 Samples für FireWire, bei Mac 32 Samples für FireWire, der zu der jeweils gewählten Buffer Size hinzukommt. Vorteil: Störungsfreie niedrige Latenz auch bei hoher CPU-Last. Zudem addiert sich der feste Anteil nicht zum Latenz-Jitter (siehe Tech Info), das subjektive Timing ist also hervorragend.

Core Audios Safety Offset

Unter OS X muss jedes Audiointerface einen sogenannten *Safety Offset* bei Aufnahme und Wiedergabe benutzen, sonst kann mit Core Audio nicht störfrei gearbeitet werden. Das Fireface benutzt einen Safety Offset von 16 Samples bei USB und 32 Samples bei FireWire. Dieser Offset wird dem System mitgeteilt, und die jeweilige Applikation kann daraus eine Gesamtlatenz von Puffergröße plus AD/DA Offset plus 2 x Safety Offset plus Safety Buffer für die aktuelle Samplefrequenz errechnen, und dem Anwender mitteilen.

38.3 USB Audio

USB-Audio unterscheidet sich von PCI-basierten Audio Interfaces. Ein Fireface 802 erreicht an einem modernen PC zwar durchaus eine ähnliche Performance wie eine PCI-Karte oder PCI-Express Karte. Geringe CPU-Last und eine knacksfreie Nutzung von 48 Samples Puffergröße sind auf aktuellen Rechnern möglich. Auf etwas älteren Rechnern dagegen verursacht schon ein simples Stereo-Playback eine CPU-Last von über 30%.

Ein kurzzeitig blockierter Rechner führt – egal ob WDM oder ASIO - zu einem Verlust eines oder mehrerer Datenpakete. Solche Probleme sind nur durch eine höhere Buffer Size (und damit Latenz) vermeidbar.

Das Fireface enthält eine einzigartige Datenprüfung, die Fehler auf dem USB-Übertragungsweg erkennt und im Settingsdialog anzeigt.

Das Fireface enthält einen speziellen Mechanismus, der die aktuelle Sampleposition automatisch korrigiert. Er erlaubt es trotz Aussetzern mit der Aufnahme und Wiedergabe fortzufahren.

Das Fireface sollte – wie alle Audiointerfaces – eine möglichst ungestörte Datenübertragung zum Computer besitzen. Dies lässt sich am einfachsten garantieren, indem das Fireface möglichst an einen eigenen Bus angeschlossen wird. Dies sollte ohne weitere Hardware möglich sein, da gängige USB 2.0 Interfaces immer im Doppelpack daherkommen. Eine Prüfung im Geräte-Manager erfolgt folgendermaßen:

- Fireface an einen USB-Port anschließen
- Gerätemanager starten, Ansicht nach Verbindung wählen
- ACPI x86-basierter PC, Microsoft ACPI konformes System, PCI Bus ausklappen

In diesem Zweig finden sich normalerweise zwei Einträge eines *USB2 Enhanced Host Controllers*. Über einen Root Hub sind daran dann die USB-Devices angeschlossen, auch das Fireface erscheint dort. Durch einfaches Umstecken lässt sich in dieser Darstellung nun überprüfen, an welchem der beiden Controller das Fireface angeschlossen ist, und bei mehreren Geräten, ob diese am gleichen Controller hängen.

Diese Information lässt sich natürlich auch nutzen, um eine USB-Festplatte am Rechner zu betreiben ohne das Fireface zu stören, indem die Platte am anderen Controller betrieben wird.

Vor allem bei Notebooks kann es aber passieren, dass alle internen Geräte und alle Buchsen am gleichen Controller hängen, und der zweite Controller überhaupt nicht genutzt wird. Dann arbeiten alle Geräte am gleichen Bus und behindern sich gegenseitig.

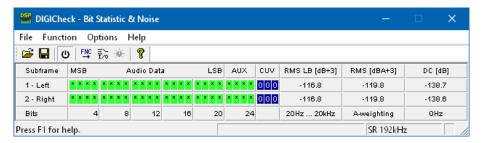
38.4 DS - Double Speed

Nach Aktivierung des *Double Speed Modus* arbeitet das Fireface 802 mit doppelter Samplefrequenz. Die interne Clock 44.1 kHz wird zu 88.2 kHz, 48 kHz zu 96 kHz.

Samplefrequenzen oberhalb 48 kHz waren nicht immer selbstverständlich – und konnten sich wegen des alles dominierenden CD-Formates (44.1 kHz) bis heute nicht auf breiter Ebene durchsetzen. Vor 1998 gab es überhaupt keine Receiver/Transmitter-Schaltkreise, welche mehr als 48 kHz empfangen oder senden konnten. Daher wurde zu einem Workaround gegriffen: statt zwei Kanälen überträgt eine AES-Leitung nur noch einen Kanal, dessen gerade und ungerade Samples auf die ursprünglichen Kanäle Links/Rechts verteilt werden. Damit ergibt sich die doppelte Datenmenge, also auch doppelte Samplefrequenz. Zur Übertragung eines Stereo-Signales sind demzufolge zwei AES/EBU-Anschlüsse erforderlich.

Diese Methode der Übertragung wird in der professionellen Studiowelt als *Double Wire* bezeichnet, und ist unter dem Namen *S/MUX (Sample Multiplexing)* auch in Zusammenhang mit der ADAT-Schnittstelle bekannt.

Da die ADAT-Schnittstelle seitens der Interface-Hardware keine Samplefrequenzen über 48 kHz ermöglicht, wird im DS-Betrieb vom Fireface 802 automatisch das Sample Multiplexing aktiviert. Die Daten eines Kanals werden auf zwei Kanäle verteilt. Da das Übertragen der Daten mit normaler Samplefrequenz (Single Speed) erfolgt, ändert sich am ADAT-Ausgang nichts, dort stehen also in jedem Fall nur 44.1 kHz oder 48 kHz an.


38.5 QS - Quad Speed

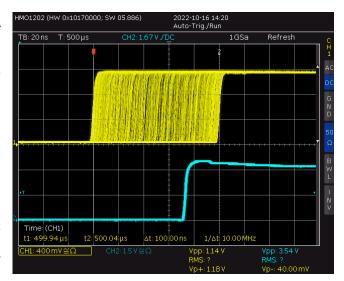
Aufgrund der geringen Verbreitung von Geräten mit Samplefrequenzen bis 192 kHz, wohl aber noch mehr wegen des fehlenden praktischen Nutzens solcher Auflösungen (CD), konnte sich Quad Speed bisher nur in wenigen Geräten durchsetzen. Eine Implementierung im ADAT-Format als doppeltes S/MUX ergibt nur noch 2 Kanäle pro optischem Ausgang.

Im QS-Betrieb aktiviert das Fireface 802 auf den ADAT-Ports automatisch das Sample Multiplexing. Die Daten eines Kanals werden auf vier Kanäle verteilt. Am ADAT-Ausgang stehen in jedem Fall physikalisch nur 44.1 kHz oder 48 kHz an.

38.6 Rauschabstand im DS-/QS-Betrieb

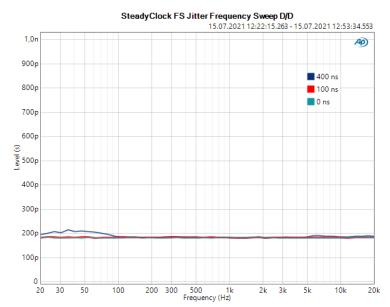
Der hervorragende Rauschabstand der AD-Wandler des Fireface 802 FS lässt sich auch ohne teures Mess-Equipment verifizieren, mittels der Aufnahme-Pegelanzeigen diverser Software. Bei Umschaltung in den DS- und QS-Betrieb steigt das angezeigte Grundrauschen jedoch von circa -116 dB auf circa -110 dB bei 96 kHz, und –89 dB bei 192 kHz. Hierbei handelt es sich um keinen Fehler. Bei dieser Art der Pegelmessung wird das Rauschen im gesamten Frequenzbereich erfasst, bei 96 kHz Samplefrequenz also von 0 Hz bis 48 kHz (RMS unbewertet), bei 192 kHz von 0 Hz bis 96 kHz.

Wird der Messbereich dagegen bei 192 kHz Samplerate auf den Bereich 20 Hz bis 20 kHz begrenzt (sogenannter Audio-Bandpass), ergibt sich wieder ein Wert von -116 dB. Dies ist auch mit DIGICheck nachvollziehbar. In der Funktion **Bit Statistic & Noise** misst DIGICheck das Grundrauschen mit *Limited Bandwidth*, ohne DC und unhörbare hochfrequente Anteile.

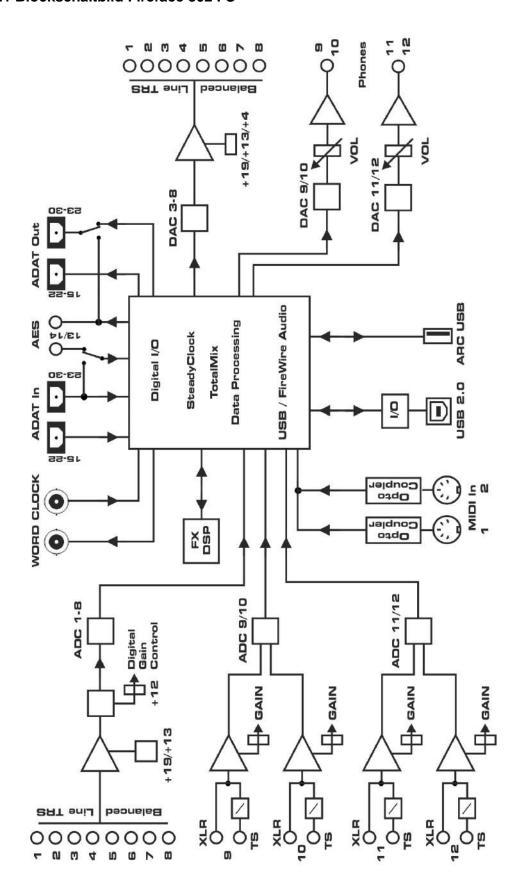

Der Grund für dieses Verhalten ist das Noise-Shaping der AD-Wandler. Sie erreichen ihren hervorragenden Klang, indem sie Störprodukte in den unhörbaren Frequenzbereich über 24 kHz verschieben. Dort nimmt das Rauschen also leicht zu. Aufgrund des hohen Energiegehaltes hochfrequenten Rauschens, sowie der verdoppelten bzw. vervierfachten Bandbreite, ergibt sich bei einer breitbandigen Messung ein deutlich verringerter Rauschabstand, während sich der hörbare Rauschanteil nicht im geringsten verändert.

38.7 SteadyClock FS

RMEs SteadyClock-Technologie garantiert exzellentes Verhalten in allen Clock-Modi. Die höchst effiziente Jitterunterdrückung erneuert und säubert jedes Clock-Signal. Aufgrund der effizienten Jitterunterdrückung arbeiten AD- und DA-Wandlung immer optimal und auf höchstem klanglichen Niveau, vollkommen unabhängig von der Qualität der Referenz-Clock.


RME realisiert modernste Schaltungstechniken wie Hi-Speed Digital Synthesizer, Digital-PLL und 800 MHz Abtastfrequenz kosten- und platzsparend direkt im FPGA. Kombiniert mit analoger und digitaler Filterung entsteht eine professionelle Clock-Technologie die ihresgleichen sucht. Dabei ist SteadyClock vergleichsweise schnell, lockt sich in Sekundenbruchteilen auf das Eingangssignal, folgt auch schnellen Varipitch-Änderungen phasengenau, und lockt direkt im Bereich 28 kHz bis 200 kHz.

Die Analyse sogenannten Interface-Jitters mit Hilfe eines Oszilloskops zeigt anschaulich wie es funktioniert. Der Screenshot zeigt die steigende Flanke eines ein mit 50 ns Peak stark verjittertes, 48 kHz Wordclock-Signal (obere Linie, gelb). Dank SteadyClock wird daraus ein sauberes Taktsignal mit weniger als 2 ns Jitter (untere Linie, Blau). Das von SteadyClock prozessierte Signal wird nicht nur intern benutzt, sondern dient auch zur Taktung der digitalen Ausgänge, die somit von Jitter befreit bedenkenlos als Referenz-Clock nutzbar sind. Außerdem prozessiert SteadyClock jegliches Eingangssignal auch SPDIF, AES, ADAT, MADI...


Der sogenannte Sampling Jitter, üblicherweise im Bereich von Pikosekunden, ist im ADI-2/4 Pro SE ebenfalls sehr niedrig. Ein Weg dies zu zeigen besteht in der Ausgabe eines speziell modulierten 11,025 kHz Sinus über den analogen Ausgang, und die Analyse des gesampelten Resultats. Jitterprodukte erscheinen in der FFT als symmetrische Seitenbänder in Form von schmalen Nadeln. SteadyClock FS weist keine auffälligen Seitenbänder auf. Bemerkenswert ist auch das identische Verhalten bei der Nutzung interner und externer Clock – ein typisches Merkmal der SteadyClock. Ein Video mit Erklärungen dazu ist auf RMEs YouTube-Kanal zu finden.

Die weiter verbesserte SteadyClock FS unterdrückt selbst tieffrequenten Jitter (ab 1 Hz), und weist eine noch höhere Jitterunterdrückung bei noch geringerem Eigenjitter auf. Dies lässt sich selbstverständlich auch messtechnisch nachweisen. In dieser Messung wird ein AES-Signal mit 0 ns (Referenz), 100 ns und 400 ns (!) Jitter angelegt, und dabei jeweils die Modulationsfrequenz im Bereich 20 Hz bis 20 kHz durchlaufen. Bei 50 Hz lassen sich circa 210 ps erkennen, entsprechend einer Jitterunterdrückung von > 65 dB. Das ist bei solch tiefen Frequenzen schlicht phantastisch.

39. Diagramme

39.1 Blockschaltbild Fireface 802 FS

39.2 Steckerbelegungen

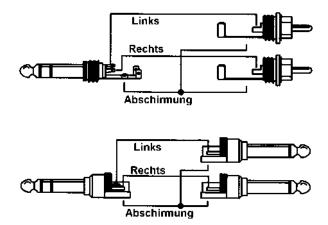
Klinkenbuchsen analoger Ein- / Ausgang

Die 6,3 mm Stereo-Klinkenbuchsen der analogen Ein- und Ausgänge sind entsprechend internationalem Standard belegt:

Spitze = + (hot) Ring = - (cold) Schaft = Masse (GND)

Die servosymmetrische Ein- und Ausgangsschaltung erlaubt eine Verwendung von Mono-Klinkensteckern (unsymmetrisch) ohne Pegelverlust. Dies entspricht einem Stereo-Klinkenstecker, bei dem der Anschluss Ring auf Masse (GND) gelegt wird.

XLR-Buchsen analoger Eingang


Die XLR-Buchsen der analogen Eingänge sind entsprechend internationalem Standard belegt:

1 = GND (Abschirmung) 2 = + (hot) 3 = - (cold)

Klinkenbuchse Phones

Die frontseitigen analogen Monitorausgänge sind über 6,3 mm Stereo-Klinkenbuchsen zugänglich. Der Ausgang ist daher direkt mit Kopfhörern nutzbar. Bei Verwendung als Line-Ausgang ist im Allgemeinen ein Adapter von Stereo-Klinke auf zwei Mono-Klinken oder Cinchstecker erforderlich.

Die Belegung folgt internationalem Standard, der linke Kanal liegt auf der Spitze des Klinkensteckers, der rechte Kanal auf dem Ring.

Bedienungsanleitung

Fireface 802 FS

Diverses

40. Zubehör

RME bietet diverses optionales Zubehör für das Fireface 802:

Artikelnummer Beschreibung

Lichtleiterkabel mit TOSLINK Steckern:

OK0100PRO Optokabel, Toslink, 1 m OK0200PRO Optokabel, Toslink, 2 m OK0300PRO Optokabel, Toslink, 3 m OK0500PRO Optokabel, Toslink, 5 m OK1000PRO Optokabel, Toslink, 10 m

ARC USB Advanced Remote Control USB

41. Garantie

Jedes Fireface 802 FS wird von IMM einzeln geprüft und einer vollständigen Funktionskontrolle unterzogen. Die Verwendung ausschließlich hochwertigster Bauteile erlaubt eine Gewährung voller zwei Jahre Garantie. Als Garantienachweis dient der Kaufbeleg / Quittung.

Innerhalb der Garantiezeit wenden Sie sich im Falle eines Defektes bitte an Ihren Händler. Schäden, die durch unsachgemäßen Einbau oder unsachgemäße Behandlung entstanden sind, unterliegen nicht der Garantie, und sind daher bei Beseitigung kostenpflichtig.

Schadenersatzansprüche jeglicher Art, insbesondere von Folgeschäden, sind ausgeschlossen. Eine Haftung über den Warenwert des Fireface 802 FS hinaus ist ausgeschlossen. Es gelten die Allgemeinen Geschäftsbedingungen der Firma Audio AG.

42. Anhang

RME News, neueste Treiber, und viele Infos zu unseren Produkten finden Sie im Internet:

https://www.rme-audio.de

Weltweiter Vertrieb:

Audio AG, Am Pfanderling 60, D-85778 Haimhausen

Hotline:

Tel.: 08133 / 9181-51

Zeiten: Montag bis Mittwoch 12-17 Uhr, Donnerstag 13:30-18:30 Uhr, Freitag 12-15 Uhr

Per E-Mail: support@rme-audio.com

Liste internationaler Supporter: https://www.rme-audio.de/support.html

RME User Forum: https://forum.rme-audio.de/

Herstellung:

IMM electronics GmbH, Leipziger Strasse 32, D-09648 Mittweida

Warenzeichen

Alle Warenzeichen und eingetragenen Marken sind Eigentum ihrer jeweiligen Inhaber. RME, Hammerfall und DIGICheck sind eingetragene Marken von RME Intelligent Audio Solutions. SyncCheck, ZLM, DIGI96, SyncAlign, TMS, TotalMix, SteadyClock und Fireface sind Warenzeichen von RME Intelligent Audio Solutions. Alesis und ADAT sind eingetragene Marken der Alesis Corp. ADAT optical ist ein Warenzeichen der Alesis Corp. Microsoft, Windows, Windows XP und Windows Vista sind registrierte oder Warenzeichen der Microsoft Corp. Apple und Mac OS sind eingetragene Marken der Apple Computer Inc. Steinberg, Cubase und VST sind eingetragene Marken der Steinberg Media Technologies GmbH. ASIO ist ein Warenzeichen der Steinberg Media Technologies GmbH. iPad, FireWire, das FireWire Symbol und das FireWire Logo sind Warenzeichen der Apple Computer Inc.

Copyright © Matthias Carstens, 05/2023. Version 3.1

Treiber und Firmware zur Drucklegung:

USB: Windows 1.245, Mac OS X: 3.222b / 3.28b2 / 4.08 (2), Firmware 221, CC212

DSP: Firmware 27. TotalMix FX: 1.83

Alle Angaben in dieser Bedienungsanleitung sind sorgfältig geprüft, dennoch kann eine Garantie auf Korrektheit nicht übernommen werden. Eine Haftung von RME für unvollständige oder unkorrekte Angaben kann nicht erfolgen. Weitergabe und Vervielfältigung dieser Bedienungsanleitung und die Verwertung seines Inhalts sowie der zum Produkt gehörenden Software sind nur mit schriftlicher Erlaubnis von RME gestattet. Änderungen, die dem technischen Fortschritt dienen, bleiben vorbehalten.

43. Konformitätserklärung

CE

Dieses Gerät wurde von einem Prüflabor getestet und erfüllt unter praxisgerechten Bedingungen die Normen zur Angleichung der Rechtsvorschriften der Mitgliedsstaaten über die elektromagnetische Verträglichkeit (RL2014/30/EU), sowie die Rechtsvorschriften zur elektrischen Sicherheit nach der Niederspannungsrichtlinie (RL2014/35/EU).

Bestimmungsgemäßer Gebrauch

Das Fireface 802 FS ist ein digitales Audiointerface für professionelle Anwendungen mit CEgeprüften Computern der Klasse B mit USB-Anschluss. Alle Kabel, die zur Verbindung mit dem Computer und den Peripheriegeräten verwendet werden, müssen abgeschirmt und geerdet sein. Der Betrieb mit nicht zertifizierten Computern oder nicht abgeschirmten Kabeln kann zu Störungen führen.

RoHS

Dieses Produkt wurde bleifrei gelötet und erfüllt die Bedingungen der RoHS Direktive RL2011/65/EU.

ISO 9001

Dieses Produkt wurde unter dem Qualitätsmanagement ISO 9001 hergestellt. Der Hersteller, IMM electronics GmbH, ist darüber hinaus nach ISO 14001 (Umwelt) und ISO 13485 (Medizin-Produkte) zertifiziert.

Entsorgungshinweis

Nach der in den EU-Staaten geltenden Richtlinie RL2012/19EU (WEEE – Directive on Waste Electrical and Electronic Equipment – RL über Elektround Elektronikaltgeräte) ist dieses Produkt nach dem Gebrauch einer Wiederverwertung zuzuführen.

Sollte keine Möglichkeit einer geregelten Entsorgung von Elektronikschrott zur Verfügung stehen, kann das Recycling durch IMM electronics GmbH als Hersteller des Fireface 802 FS erfolgen.

Dazu das Gerät frei Haus senden an:

IMM electronics GmbH Leipziger Straße 32 D-09648 Mittweida.

Unfreie Sendungen werden nicht entgegengenommen.